Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T17:47:51.208Z Has data issue: false hasContentIssue false

Constructional morphology of sand dollars

Published online by Cambridge University Press:  08 February 2016

Adolf Seilacher*
Affiliation:
Geologisches Institut, Universität Tübingen, D 7400 Tübingen, Germany

Abstract

This paper analyzes an aberrant group of echinoids in terms of constructional morphology, i.e., as modification of an established “Bauplan” by a set of new functional and morphogenetic constraints and possibilities. The characteristics of sand dollars (flat test, spine differentiation, branched food grooves, lunules) are related to a particular combination of burrowing and sieve feeding in sandy sediments. It has independently evolved from less specialized Clypeasteroids in at least three lineages (Scutellina, Rotulidae, Arachnoididae), which have solved inherent problems differently (sutural interlocking; growth patterning of food grooves and canal systems; lunule formation; weight belts). These three groups have radiated in different degrees due to their different palegeographic histories.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bell, B. M. and Frey, R. W. 1969. Observations on ecology and the feeding habits and burrowing mechanisms of Mellita quinquiesperforata (LESKE). J. Paleontol. 43:553560.Google Scholar
Chia, F. S. 1973. Sand dollar: A weight belt for the juvenile. Science. 181:7374.CrossRefGoogle ScholarPubMed
Clark, H. L. 1942. A revision of the keyhole urchins (Mellita). Proc. U.S. Nat. Mus. 89:435444.CrossRefGoogle Scholar
Dexter, D. M. 1977. A natural history of the sand dollar Encope stokesi L. Agassiz in Panama. Bull. Mar. Sci. 27:544551.Google Scholar
Durham, J. W. 1955. Classification of Clypeasteroid echinoids. Univ. Calif. Publ. Geol. Sci. 31:73198.Google Scholar
Durham, J. W. 1966. Clypeasteroids. Pp. 450491. In: Moore, R. C., ed. Treatise on Invertebrate Paleontology, Part U, Echinodermata 3. Geol. Soc. Am. and Univ. Kans. Press; Lawrence, Kansas.Google Scholar
Frey, R. W. and Seilacher, A.In press. Uniformity in marine invertebrate ichnology.Google Scholar
Goodbody, I. 1960. The feeding mechanism in the sand dollar Mellita sexiesperforata (LESKE). Biol. Bull. 119:8086.CrossRefGoogle Scholar
Jefferies, R. P. S. and Lewis, D. N. 1978. The English Silurian fossil Placocystites forbesianus and the ancestry of the vertebrates. Philos. Transact. R. Soc. London, Ser. B. 282:205323.Google Scholar
Kier, P. M. 1963. Tertiary echinoids from the Caloosahatchec and Tamiami Formations of Florida. Smithsonian Misc. Coll. 145(5).Google Scholar
Kier, P. M. 1974. Evolutionary trends and their functional significance in post-Paleozoic echinoids. Paleontol. Soc. Mem. 5; J. Paleontol. 48, Suppl.Google Scholar
Kier, P. M. 1977. The poor fossil record of the regular echinoid. Paleobiology. 3:168174.CrossRefGoogle Scholar
MacGinitie, G. E. and MacGinitie, N. 1949. Natural History of Marine Animals. McGraw-Hill; New York.Google Scholar
Märkel, K. 1976. Struktur und Wachstum des Coronarskelettes von Arbacia lixula Linné (Echinodermata, Echinoidea). Zoomorphologie. 84:279299.CrossRefGoogle Scholar
Mortensen, T. 1933. Papers from Dr. Th. Mortensen's Pacific Expedition 1914-16. LXIII. Biological observations on ophiurids, with descriptions of two new genera and four new species. Vid. Medd. Dansk Naturhist. Foren. 93:171194.Google Scholar
Mortensen, T. 1948. A monograph of the Echinoidea. IV.2. Clypeastroida. C. A. Reitzel, publ.; Copenhagen.Google Scholar
Moss, M. L. and Meehan, M. M. 1967. Sutural connective tissues in the test of an echinoid Arbatia punctulata. Acta anat. 66:279304.Google ScholarPubMed
Moss, M. L. and Meehan, M. M. 1968. Growth of the echinoid test. Acta anat. 69:409444.CrossRefGoogle ScholarPubMed
Otto, F. 1976. Pneus in Nature and Technics. 334 pp. Mitt. Inst. f. leichte Flächentragwerke; Univ. Stuttgart.Google Scholar
Raup, D. M. 1968. Theoretical morphology of echinoid growth. In: Macurda, D. B., ed. Paleobiological Aspects of Growth and Development. Paleontol. Soc. Mem. 2; J. Paleontol.42:5063.Google Scholar
Ricketts, E. F. and Calvin, J. 1952. Between Pacific Tides. 3rd. ed.Stanford Univ. Press; Stanford, Calif.Google Scholar
Rosenkranz, D. 1971. Zur Sedimentologie und Ökologie von Echinodermen-Lagerstätten. N. Jb. Geol. Paläontol., Abh. 138:221258.Google Scholar
Roux, M. 1975. Microstructural analysis of the crinoid stem. Univ. Kans. Paleontol. Contrib. 75.Google Scholar
Schaffer, H. 1962. Die Scutelliden des Miozäns von Österreich und Ungarn. Paläontol. Zeitschr. 36:135170.CrossRefGoogle Scholar
Schamalfuss, H. 1978. Constructional morphology of cuticular terraces in trilobites, with conclusions on synecological evolution. In: Seilacher, A., ed. Paleoecology. Report 1976-1978 Sonderforschungsbereich 53. N. Jb. Geol. Paläontol., Abh. 157:164168.Google Scholar
Seilacher, A. 1961. Krebse im Brandungssand. Natur und Volk. 91:257264.Google Scholar
Seilacher, A. 1972. Divaricate patterns in pelecypod shells. Lethaia. 5:325343.CrossRefGoogle Scholar
Stanley, D. J. and James, N. P. 1971. Distribution of Echinarachnius parma (Lamarck) and associated fauna on Sable Islands Bank, Southeast Canada. Smithsonian Contrib. Earth. Sci. 6.Google Scholar
Timko, P. L. 1976. Sand dollars as suspension feeders: A new description of feeding in Dendraster excentricus. Biol. Bull. 151:247259.CrossRefGoogle Scholar
Westphal, F. 1975. Bauprinzipien im Plattenpanzer der Placodonten (Reptilia triadica). Paläontol. Zr. 49:97125.CrossRefGoogle Scholar