Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T18:02:52.940Z Has data issue: false hasContentIssue false

Conjunction among taxonomic distributions and the Miocene mammalian biochronology of the Great Plains

Published online by Cambridge University Press:  08 February 2016

John Alroy*
Affiliation:
Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois 60637

Abstract

This paper presents a new means of interpreting the distribution of taxa among taxonomic lists. Traditionally, “similarity” indices have been used to compare lists, and “association” measures have been used to compare taxonomic distributions. It is argued that when sampling regimes are poorly understood, all similarity and association indices are unjustifiable. However, observations that taxa have overlapping (conjunct) or nonoverlapping (disjunct) distributions are universally meaningful. Because greater sampling can only increase the number of known conjunctions and because long lists serve as conjunctional Rosetta Stones, conjunction data sets can be far more reliable than the lists that generate them. One way to account for patterns of conjunction and disjunction is to create theoretical spaces composed of two distributional boundaries or edges for each taxon in each dimension. A parsimonious arrangement of edges implies distributions that always overlap when taxa are conjunct and infrequently overlap when taxa are disjunct. A procedure involving correspondence analysis is shown to minimize the number of implied disjunctions. The method is used to analyze a set of 271 Miocene large-mammal genus lists from the Great Plains region. Biostratigraphic and radiometric data demonstrate that the “best” arrangement of distributional edges is temporal and corresponds to an age-range chart. The edge sequence is calibrated to the radiometric time scale and used to compute a detailed genus-level diversity curve and to redefine the boundaries between Miocene Land-Mammal Ages and Subages in the Great Plains. Each of the Miocene Ages can be divided into two or three Subages. Diversity levels are apparently low throughout the Early Miocene and rise sharply during the Middle Miocene. Significant drops in diversity occurred at about 17.4, 11.6, 8.7, and 6.5 Ma. The base of the Barstovian corresponds to the base of the Middle Miocene, and the Clarendonian straddles the Middle-Late Miocene boundary.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Archer, A. W., and Maples, C. G. 1987. Monte Carlo simulation of selected similarity coefficients I. Effect of number of variables. Palaios 2:609617.CrossRefGoogle Scholar
Barry, J. C., Flynn, L. J., and Pilbeam, D. R. 1990. Faunal diversity and turnover in a Miocene terrestrial sequence. Pp. 381421in Ross, R. M. and Allmon, W. D., eds. Causes of evolution: a paleontological perspective. University of Chicago Press, Chicago.Google Scholar
Barry, J. C., Johnson, N. M., Raza, S. M., and Jacobs, L. L. 1985. Neogene mammalian faunal change in southern Asia: correlations with climatic, tectonic, and eustatic events. Geology 13:637640.2.0.CO;2>CrossRefGoogle Scholar
Behrensmeyer, A. K., and Schindel, D. 1983. Resolving time in paleobiology. Paleobiology 9:18.CrossRefGoogle Scholar
Berggren, W. A., Kent, D. V., Flynn, J. J., and Van Couvering, J. A. 1985. Cenozoic geochronology. Geological Society of America Bulletin 96:14071418.2.0.CO;2>CrossRefGoogle Scholar
Brower, J. C. 1985. Archaeological seriation of an original data matrix. Pp. 95108in Gradstein, F. M., Agterberg, F. P., Brower, J. C., and Schwarzacher, W. S., eds. Quantitative stratigraphy. D. Reidel, Dordrecht.Google Scholar
Burroughs, W. A., and Brower, J. C. 1982. Ser, a Fortran program for the seriation of biostratigraphic data. Computers and Geosciences 8:137148.CrossRefGoogle Scholar
Cheetham, A. M., and Hazel, J. E. 1969. Binary (presence-absence) similarity coefficients. Journal of Paleontology 43:11301136.Google Scholar
Crepet, W. L., and Feldman, G. D. 1991. The earliest remains of grasses in the fossil record. American Journal of Botany 78:10101014.CrossRefGoogle Scholar
Digby, P.G.N., and Kempton, R. A. 1987. Multivariate analysis of ecological communities. Chapman and Hall, London.Google Scholar
Evander, R. L. 1986. Formal redefinition of the Hemingfordian-Barstovian Land Mammal Age boundary. Journal of Vertebrate Paleontology 6:374381.CrossRefGoogle Scholar
Flynn, J. J. 1986. Faunal provinces and the Simpson Coefficient. Contributions to Geology, University of Wyoming, Special Paper 3:317338.Google Scholar
Gauch, H. G. 1982. Multivariate analysis in community ecology. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Guex, J., and Davaud, E. 1984. Unitary associations method: use of graph theory and computer algorithms. Computers and Geosciences 10:6996.CrossRefGoogle Scholar
Haq, B. U., Hardenbol, J., and Vail, P. R. 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. Society of Economic Paleontologists and Mineralogists Special Publication 42:71108.Google Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., and Smith, D. G. 1989. A geologic time scale 1989. Cambridge University Press, Cambridge.Google Scholar
Hill, M. O. 1979. Decorana—a Fortran program for detrended correspondence analysis and reciprocal averaging: ecology and systematics. Cornell University, Ithaca, N.Y.Google Scholar
Hodell, D. A., Benson, R. H., Kennett, J. P., and Rakic-El Bied, K. 1989. Stable isotope stratigraphy of latest Miocene sequences in northwest Morocco: the Bou Regreg section. Paleoceanography 4:467482.CrossRefGoogle Scholar
Kenkel, N. C., and Orloci, L. 1986. Applying metric and non-metric multidimensional scaling to ecological studies: some new results. Ecology 67:919928.CrossRefGoogle Scholar
Kennett, J. P. 1986. Miocene to early Pliocene oxygen and carbon isotope stratigraphy in the southwest Pacific, Deep Sea Drilling Project Leg 90. Initial Reports of the Deep Sea Drilling Project 90:13831411.Google Scholar
Kluge, A. G., and Farris, J. S. 1969. Quantitative phyletics and the evolution of anurans. Systematic Zoology 18:132.CrossRefGoogle Scholar
Kruskal, J. B. 1964. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29:115129.CrossRefGoogle Scholar
Lundelius, E. L. Jr., Churcher, C. S., Downs, T., Harington, C. R., Lindsay, E. H., Schultz, G. E., Semken, H. A., Webb, S. D., and Zakrzewski, R. J. 1987. North American Quaternary sequence. Pp. 211235in Woodburne, 1987a.Google Scholar
MacFadden, B. J., and Hulbert, R. C. Jr. 1988. Explosive speciation at the base of the adaptive radiation of Miocene grazing horses. Nature (London) 336:466468.CrossRefGoogle Scholar
Maples, C. G., and Archer, A. W. 1988. Monte Carlo simulation of selected binomial similarity coefficients. II. Effect of sparse data. Palaios 3:95103.CrossRefGoogle Scholar
Miller, K. G., Fairbanks, R. G., and Mountain, G. S. 1987. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography 2:119.CrossRefGoogle Scholar
Müller, D. W., and Mueller, P. A. 1991. Origin and age of the Mediterranean Messinian evaporites: implications from Sr isotopes. Earth and Planetary Science Letters 107:112.CrossRefGoogle Scholar
Naeser, C. W., Izett, G. A., and Obradovich, J. D. 1980. Fissiontrack and K-Ar ages of natural glasses. United States Geological Survey Bulletin 1489:131.Google Scholar
Pickford, M. 1981. Preliminary Miocene mammalian biostratigraphy for western Kenya. Journal of Human Evolution 10:7397.CrossRefGoogle Scholar
Pickford, M. 1987. Concordance entre la paléontologie continentale de l'Est africain et les événements paléo-océanographiques au néogène. Comptes Rendus de l'Académie des Sciences, Paris 304:675678.Google Scholar
Pielou, E. C. 1984. The interpretation of ecological data. Wiley, New York.Google Scholar
Prothero, D. R., and Rensberger, J. M. 1985. Preliminary magnestostratigraphy of the John Day Formation, Oregon, and the North American Oligocene-Miocene boundary. Newsletters on Stratigraphy 15:5970.CrossRefGoogle Scholar
Quade, J., Cerling, T. E., and Bowman, J. R. 1989. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature (London) 342:163166.CrossRefGoogle Scholar
Raup, D. M., and Crick, R. E. 1979. Measurement of faunal similarity in paleontology. Journal of Paleontology 53:12131227.Google Scholar
Repenning, C. A. 1987. Biochronology of the microtine rodents of the United States. Pp. 236268in Woodburne, 1987a.Google Scholar
Schoch, R. M. 1987. A comment on the formal redefinition of the Hemingfordian-Barstovian Land Mammal Age boundary. Journal of Vertebrate Paleontology 7:472473.CrossRefGoogle Scholar
Seward, D. 1979. Comparison of zircon and glass fission track ages from tephra horizons. Geology 7:479482.2.0.CO;2>CrossRefGoogle Scholar
Simpson, G. G. 1943. Mammals and the nature of continents. American Journal of Science 241:131.CrossRefGoogle Scholar
Skinner, M. F., and Johnson, F. W. 1984. Tertiary stratigraphy and the Frick Collection of fossil vertebrates from north-central Nebraska. Bulletin of the American Museum of Natural History 178:215368.Google Scholar
Tedford, R. H., Skinner, M. F., Fields, R. W., Rensberger, J. M., Whistler, D. P., Galusha, T., Taylor, B. E., MacDonald, J. R., and Webb, S. D. 1987. Faunal succession and biochronology of the Arikareean through Hemphillian interval (Late Oligocene through earliest Pliocene epochs) in North America. Pp. 153210in Woodburne, 1987a.Google Scholar
Thomas, H. 1984. Les Bovidae (Artiodactyla: Mammalia) du Miocène du sous-continent indien, de la péninsule Arabique et de l'Afrique: biostratigraphie, biogéographie et écologie. Palaeogeography, Palaeoclimatology, Palaeoecology 45:251299.CrossRefGoogle Scholar
Thomasson, J. R., Zakrzewski, R. J., Lagarry, H. E., and Mergen, D. E. 1990. A Late Miocene (Late Early Hemphillian) Biota from northwestern Kansas. National Geographic Research 6:231244.Google Scholar
Van Couvering, J.A.H., and Van Couvering, J. A. 1976. Early Miocene mammal fossils from East Africa: aspects of geology, faunistics, and paleocology. Pp. 155207in Isaac, G. L. and McCown, E. R., eds. Human origins: Louis Leakey and the East African evidence. W. A. Benjamin, Menlo Park, Calif.Google Scholar
Voorhies, M. R. 1990. Vertebrate biostratigraphy of the Ogallala Group in Nebraska. Pp. 115151in Gustavson, T. C., ed. Geologic framework and regional hydrology: Upper Cenozoic Blackwater Draw and Ogallala formations, Great Plains. Bureau of Economic Geology, University of Texas, Austin.Google Scholar
Wartenberg, D., Ferson, S., and Rohlf, F. J. 1987. Putting things in order: a critique of Detrended Correspondence Analysis. American Naturalist 129:434448.CrossRefGoogle Scholar
Webb, S. D. 1969. The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska. University of California Publications in Geological Sciences 78:1191.Google Scholar
Webb, S. D. 1977. A history of savanna vertebrates in the New World. Part I: North America. Annual Review of Ecology and Systematics 8:355380.CrossRefGoogle Scholar
Webb, S. D. 1984. Ten million years of mammal extinctions in North America. Pp. 189210in Martin, P. S., and Klein, R. G., eds. Quaternary extinctions. University of Arizona Press, Tucson.Google Scholar
Wilkinson, E. M. 1974. Techniques of data analysis—seriation theory. Archaeo-Physika 5:1142.Google Scholar
Williamson, M. H. 1978. The ordination of incidence data. Journal of Ecology 66:911920.CrossRefGoogle Scholar
Wood, H. E., Chaney, R. W., Clark, J., Colbert, E. H., Jepsen, G. L., Reeside, J. B. Jr., and Stock, C. 1941. Nomenclature and correlation of the North American continental Tertiary. Geological Society of America Bulletin 52:148.CrossRefGoogle Scholar
Woodburne, M. O., ed. 1987a. Cenozoic mammals of North America. University of California Press, Berkeley.Google Scholar
Woodburne, M. O., ed. 1987b. Principles, classification, and recommendations. Pp. 917in Woodburne, 1987a.Google Scholar
Woodburne, M. O., Tedford, R. H., and Swisher, C. C. III. 1990. Lithostratigraphy, biostratigraphy, and geochronology of the Barstow Formation, Mojave Desert, southern California. Geological Society of America Bulletin 102:459477.2.3.CO;2>CrossRefGoogle Scholar
Woodruff, F., and Savin, S. M. 1991. Mid-Miocene isotope stratigraphy in the deep sea: high-resolution correlations, paleo-climatic cycles, and sediment preservation. Paleoceanography 6:755806.CrossRefGoogle Scholar
Wright, J. D., Miller, K. G., and Fairbanks, R. G. 1991. Evolution of modern deepwater circulation: evidence from the late Miocene southern ocean. Paleoceanography 6:275290.CrossRefGoogle Scholar