Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T19:43:36.677Z Has data issue: false hasContentIssue false

Classifying echinoid skeleton models: testing ideas about growth and form

Published online by Cambridge University Press:  08 April 2016

Maria Abou Chakra
Affiliation:
McMaster University, Department of Biology, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada. E-mail: [email protected]
Jon Rich Stone*
Affiliation:
McMaster University, Department of Biology and Origins Institute, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada. E-mail: [email protected]
*
Corresponding author

Abstract

Theoretical morphology is the scientific field in which researchers model organism growth and form. The field is developed well in studies on skeletons, especially shells. Researchers have contributed echinoid skeleton models to the field, but these have yet to be recognized collectively. We present herein the first comprehensive review for echinoid skeleton models in theoretical morphology. We apply a phylogenetic systematic analysis to those models, use the resulting consensus cladogram to classify and interrelate the models in an analogy in which they are likened to fossil specimens in a biostratigraphic record, and utilize the biostratigraphic metaphor to define trends within theoretical morphology as it applies to echinoid skeleton models.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abou Chakra, M. 2010. Modelling Echinoid Skeletal Growth and Form. . McMaster University, Hamilton, Ontario.Google Scholar
Abou Chakra, M., and Stone, J. R. 2008. Descartes, Plateau, and sea urchins. Pp. 97105in Brebbia, C. A., ed. Wit transactions on ecology and the environment. Wit Press, Wessex, U.K.Google Scholar
Abou Chakra, M. 2011. Holotestoid: a computational model for testing hypotheses about echinoid skeleton form and growth. Journal of Theoretical Biology (in press).Google Scholar
Aste, T. 1996. Circle, sphere, and drop packings. Physical Review E 53:25712579.Google Scholar
Aste, T., and Weaire, D. L. 2000. The pursuit of perfect packing. Institute of Physics Publishing, Bristol, U.K., and Philadelphia.Google Scholar
Baron, C. J. 1990. What functional morphology cannot explain: a model of sea urchin growth and a discussion of the role of morphogenetic explanations in evolutionary biology. Pp. 471488in Dudley, E. C., ed. The unity of evolutionary biology. Proceedings of the Fourth International Congress of Systematic and Evolutionary Biology. Dioscorides, Portland, Ore.Google Scholar
Baron, C. J. 1991. The structural mechanics and morphogenesis of extant regular echinoids having rigid tests. . University of California, Berkeley.Google Scholar
Boys, S. C. V. 1958. Soap bubbles, their colors and the forces which mold them. Doubleday Anchor Books, Garden City, N.Y.Google Scholar
Campbell, D. 1974. Evolutionary epistemology. Pp. 412463in Schilpp, P. A., ed. The philosophy of Karl R. Popper. Open Court, LaSalle, Ill.Google Scholar
Coxeter, H. S. M. 1969. Introduction to geometry. Wiley, New York.Google Scholar
Dafni, J. 1986. A biomechanical model for the morphogenesis of regular echinoid tests. Paleobiology 12:143160.Google Scholar
Darwin, C. 1859. On the origin of species by means of natural selection, or preservation of favored races in the struggle of life. John Murray, London.Google Scholar
David, B., and Mooi, R. 1996. Embryology supports a new theory of skeletal homologies for the phylum Echinodermata. Comptes Rendus de l'Académie des Sciences, série III, Sciences de la Vie 319:577584.Google Scholar
Dera, G., Eble, G. J., Neige, P., and David, B. 2008. The flourishing diversity of models in theoretical morphology: from current practices to future macroevolutionary and bioenvironmental challenges. Paleobiology 34:301317.Google Scholar
Deutler, F. 1926. Über das Wachstum des Seeigelskeletts. Zoologische Jahrbücher. Abteilung fur Anatomie und Ontogenie der Tiere 48:119200.Google Scholar
Ebert, T. A. 1988. Allometry, design and constraint of body components and of shape in sea urchins. Journal of Natural History 22:14071425.CrossRefGoogle Scholar
Ellers, O. 1993. A mechanical model of growth in regular sea urchins: predictions of shape and a developmental morphospace. Proceedings of the Royal Society of London B 254:123129.Google Scholar
Ellers, O., and Telford, M. 1992. Causes and consequences of fluctuating coelomic pressure in sea urchins. Biological Bulletin 182:424434.Google Scholar
Farris, J. S. 1988. Hennig86, Version1.5. Computer program for parsimony analysis and documentation. Port Jefferson, N.Y.Google Scholar
Gordon, I. 1926. The development of the calcareous test of Echinus miliaris. Philosophical Transactions of the Royal Society of London B 214:259312.Google Scholar
Gordon, I. 1927. Skeletal development in Arbacia, Echinarachnius, and Leptasterias. Philosophical Transactions of the Royal Society of London B 217:289334.Google Scholar
Gould, S. J., and Eldredge, N. 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology 3:115151.CrossRefGoogle Scholar
Hennig, W. 1966. Phylogenetic systematics. University of Illinois Press, Urbana.Google Scholar
Hull, D. L. 1988. Science as a process: an evolutionary account of the social and conceptual development of science. University of Chicago Press, Chicago.Google Scholar
Hyman, L. H. 1955. The invertebrates: Echinodermata. McGraw-Hill, New York.Google Scholar
Isenberg, C. 1978. The science of soap films and soap bubbles. Tieto, Cleveton, U.K.Google Scholar
Jackson, R. T. 1912. Phylogeny of the Echini, with a revision of Palaeozoic species. Memoirs of the Boston Society of Natural History 7:149.Google Scholar
Jensen, M. 1972. The ultrastructure of the echinoid skeleton. Sarsia 48:3948.Google Scholar
Johnson, A. S., Ellers, O., Lemire, J., Minor, M., and Leddy, H. A. 2002. Sutural loosening and skeletal flexibility during growth: determination of drop-like shapes in sea urchins. Proceedings of the Royal Society of London B 269:215220.Google Scholar
Kuhn, T. 1970. The structure of scientific revolutions. University of Chicago Press, Chicago.Google Scholar
Langarias, J. C., Mallows, C. L., and Wilks, A. R. 2002. Beyond the Descartes circle theorem. American Mathematical Monthly 109:338361.Google Scholar
Lawrence, J. M. 1987. A functional biology of echinoderms. Johns Hopkins University Press, Baltimore.Google Scholar
Lovén, S. L. 1874. Études sur les Échinoïdées. P. A. Norstedt, Stockholm.Google Scholar
Märkel, K. 1981. Experimental morphology of coronar growth in regular echinoids. Zoomorphology 97:3152.Google Scholar
McGhee, G. R. 1999. Theoretical morphology: the concept and its applications. Columbia University Press, New York.Google Scholar
Moss, M. L., and Meehan, M. 1968. Growth of the echinoid test. Acta Anatomica 69:409444.Google Scholar
Pearse, J. S., and Pearse, V. B. 1975. Growth zones in the echinoid skeleton. American Zoologist 15:731753.Google Scholar
Philippi, U., and Nachtigall, W. 1996. Functional morphology of regular echinoid tests (Echinodermata, Echinoida): a finite element study. Zoomorphology 116:3550.Google Scholar
Popper, C. 1987. The rationality of scientific revolutions. Wads-worth, Belmont.Google Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. Journal of Paleontology 40:11781190.Google Scholar
Raup, D. M. 1968. Theoretical morphology of echinoid growth. Journal of Paleontology 42:5063.Google Scholar
Sea Urchin Genome Sequencing Consortium. 2006. The genome of the sea urchin Strongylocentrotus purpuratus. Science 314:941952.Google Scholar
Seilacher, A. 1979. Constructional morphology of sand dollars. Paleobiology 5:191221.Google Scholar
Smith, A. B. 1980. Stereom microstructure of the echinoid test. Palaeontological Association, London.Google Scholar
Smith, A. B. 1984. Echinoid paleobiology. Allen and Unwin, London.Google Scholar
Stone, J. R. 1996. The evolution of ideas: a phylogeny of shell models. American Naturalist 148:904929.Google Scholar
Stone, J. R. 1997. The spirit of D'Arcy Thompson dwells in empirical morphospace. Mathematical Biosciences 142:1330.Google Scholar
Telford, M. 1985. Domes, arches and urchins: the skeletal architechture of echinoids (Echinodermata). Zoomorphology 105:114124.Google Scholar
Telford, M. ed. 1994. Structural models and graphical simulation of echinoids. Balkema, Rotterdam.Google Scholar
Thompson, D. A. W. 1917. On growth and form. Cambridge University Press, Cambridge.Google Scholar
Timoshenko, S. 1940. Theory of plates and shells. McGraw-Hill, New York.Google Scholar
Vermeij, G. J. 1970. Adaptive versatility and skeleton construction. American Naturalist 104:253260.Google Scholar
Zachos, L. G. 2006. Modeling echinoid skeletal growth: a first principle approach. In Proceedings of the 12th International Echinoderm Conference, Abstracts of papers, p. 63. University of New Hampshire, Durham.Google Scholar
Zachos, L. G. 2007a. Spines, splines, and sines: modeling the growth of living and fossil echinoids. Geological Society of America Abstracts with Programs 39(6):74.Google Scholar
Zachos, L. G. 2007b. An equilibrium theory of echinoid plate geometry. Geological Society of America Abstracts with Programs 39(6):501.Google Scholar
Zachos, L. G. 2009a. A new computational growth model for sea urchin skeletons. Journal of Theoretical Biology 259:646657.Google Scholar
Zachos, L. G. 2009b. Modeling echinoid skeletal growth: a first principles approach. Pp. 299304in Harris, L. G., Boetger, S. A., Walker, C. W., and Lesser, M. P., eds. Echinoderms: Durham. Proceedings of the 12th International Echinoderm Conference, Durham, New Hampshire, 7–11 August 2006. CRC Press, Boca Raton, Fla.Google Scholar