Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T00:47:01.786Z Has data issue: false hasContentIssue false

Cats in the forest: predicting habitat adaptations from humerus morphometry in extant and fossil Felidae (Carnivora)

Published online by Cambridge University Press:  18 March 2013

Carlo Meloro*
Affiliation:
Hull York Medical School, University of Hull, Loxley Building, Cottingham Road Hull HU6 7RX, UK
Sarah Elton
Affiliation:
Hull York Medical School, University of Hull, Loxley Building, Cottingham Road Hull HU6 7RX, UK
Julien Louys
Affiliation:
Research Centre in Evolutionary Anthropology and Palaeoecology, School of Natural Sciences and Psychology, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, U.K.
Laura C. Bishop
Affiliation:
Research Centre in Evolutionary Anthropology and Palaeoecology, School of Natural Sciences and Psychology, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, U.K.
Peter Ditchfield
Affiliation:
Research Laboratory for Archaeology and the History of Art, School of Archaeology, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford OX1 3QY, U.K.
*
Corresponding author. Present address: Dipartimento di Scienze della Terra, Universitá degli Studi di Napoli, Federico II, Naples, Italy. E-mail: [email protected].

Abstract

Mammalian carnivores are rarely incorporated in paleoenvironmental reconstructions, largely because of their rarity within the fossil record. However, multivariate statistical modeling can be successfully used to quantify specific anatomical features as environmental predictors. Here we explore morphological variability of the humerus in a closely related group of predators (Felidae) to investigate the relationship between morphometric descriptors and habitat categories. We analyze linear measurements of the humerus in three different morphometric combinations (log-transformed, size-free, and ratio), and explore four distinct ways of categorizing habitat adaptations. Open, Mixed, and Closed categories are defined according to criteria based on traditional descriptions of species, distributions, and biome occupancy. Extensive exploratory work is presented using linear discriminant analyses and several fossils are included to provide paleoecological reconstructions.

We found no significant differences in the predictive power of distinct morphometric descriptors or habitat criteria, although sample splitting into small and large cat guilds greatly improves the stability of the models. Significant insights emerge for three long-canine cats: Smilodon populator, Paramachairodus orientalis, and Dinofelis sp. from Olduvai Gorge (East Africa). S. populator and P. orientalis are both predicted to have been closed-habitat adapted taxa. The false “sabertooth” Dinofelis sp. from Olduvai Gorge is predicted to be adapted to mixed habitat. The application of felid humerus ecomorphology to the carnivoran record of Olduvai Gorge shows that the older stratigraphic levels (Bed I, 1.99–1.79 Ma) included a broader range of environments than Beds II or V, where there is an abundance of cats adapted to open environments.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Albrecht, G. H. 1992. Assessing the affinities of fossils using canonical variates and generalized distances. Journal of Human Evolution 7:4969.CrossRefGoogle Scholar
Andersson, K. 2004. Elbow-joint morphology as a guide to forearm function and foraging behaviour in mammalian carnivores. Zoological Journal of the Linnean Society 142:91104.CrossRefGoogle Scholar
Andersson, K., and Werdelin, L. 2003. The evolution of cursorial carnivores in the Tertiary: implications of elbow-joint morphology. Proceeding of the Royal Society of London B 270:S163S165.CrossRefGoogle ScholarPubMed
Antón, M., Salesa, M. J., Pastor, J. F., Sánchez, I. M., Fraile, S., and Morales, J. 2004. Implications of the mastoid anatomy of larger extant felids for the evolution and predatory behaviour of sabertoothed cats (Mammalia, Carnivora, Felidae). Zoological Journal of the Linnean Society 140:207221.CrossRefGoogle Scholar
Antón, M., Galobart, A., and Turner, A. 2005. Co-existence of scimitar-toothed cats, lions and hominins in the European Pleistocene: implications of the post-cranial anatomy of Homotherium latidens (Owen) for comparative paleoecology. Quaternary Science Review 24:12871301.CrossRefGoogle Scholar
Anyonge, W. 1996. Locomotor behaviour in Plio-Pleistocene saber-tooth cats: a biomechanical analysis. Journal of Zoology 238:395413.CrossRefGoogle Scholar
Barone, R. 1980. Anatomia Comparata dei Mammiferi Domestici, Vol. 1. Osteologia. Edagricole, Bologna.Google Scholar
Bassarova, M., Janis, C. M., and Archer, M. 2009. The calcaneum—on the heels of marsupial locomotion. Journal of Mammalian Evolution 16:123.CrossRefGoogle Scholar
Bertram, J. E. A., and Biewener, A. A. 1990. Differential scaling of the long bones in the terrestrial Carnivora and other mammals. Journal of Morphology 204:157169.CrossRefGoogle Scholar
Biknevicius, A. R., and Van Valkenburgh, B. 1996. Design for killing: craniodental adaptations of predators. Pp. 393428inGittleman 1989.Google Scholar
Bishop, L. C. 1999. Suid paleoecology and habitat preference at African Pliocene and Pleistocene hominid localities. Pp. 216225inBromage, T. G. and Schrenk, F., eds. African biogeography, climate change and human evolution. Oxford University Press, Oxford.CrossRefGoogle Scholar
Carbone, C., Mace, G. M., Roberts, S. C., and Macdonald, D. W. 1999. Energetic constraints on the diet of terrestrial carnivores. Nature 402:286288.CrossRefGoogle ScholarPubMed
Carbone, C., Teacher, A., and Rowcliffe, J. M. 2007. The costs of carnivory. PLoS Biology 5 (2):e22.CrossRefGoogle ScholarPubMed
Carrano, M. T. 1999. What, if anything, is a cursor? Categories vs. continua for determining locomotor habit in mammals and dinosaurs. Journal of Zoology 247:2942.CrossRefGoogle Scholar
Cardini, A., Jansson, A.-U., and Elton, S. 2007. Ecomorphology of vervet monkeys: a geometric morphometric approach to the study of clinal variation. Journal of Biogeography 34:16631678.CrossRefGoogle Scholar
Christiansen, P. 1999. Scaling of the limb long bones to bodymass in terrestrial mammals. Journal of Morphology 239:167190.3.0.CO;2-8>CrossRefGoogle Scholar
Christiansen, P. 2008. Evolution of skull and mandible shape in cats. PLoS ONE 3 (7):e2807.CrossRefGoogle ScholarPubMed
Christiansen, P., and Harris, M. 2005. Body size of Smilodon (Mammalia: Felidae). Journal of Morphology 266:369384.CrossRefGoogle ScholarPubMed
Damuth, J. 1982. Analysis of the preservation of community structure in assemblages of fossil mammals. Paleobiology 8:434446.CrossRefGoogle Scholar
Damuth, J., and MacFadden, B. J. 1990. Body size in mammalian paleobiology. Cambridge University Press, Cambridge.Google Scholar
DeGusta, D., and Vrba, E. S. 2003. A method for inferring paleohabitats from the functional morphology of bovid astragali. Journal of Archaeological Science 30:10091022.CrossRefGoogle Scholar
DeGusta, D., and Vrba, E. S. 2005a. Methods for inferring paleohabitats from discrete traits of the bovid postcranial skeleton. Journal of Archaeological Science 32:11151123.CrossRefGoogle Scholar
DeGusta, D., and Vrba, E. S. 2005b. Methods for inferring paleohabitats from the functional morphology of bovid phalanges. Journal of Archaeological Science 32:10991113.CrossRefGoogle Scholar
Elton, S. 2001. Locomotor and habitat classification of cercopithecoid postcranial material from Sterkfontein Member4, Bolt's Farm and Swartkrans Members 1 and 2, South Africa. Palaeontologia Africana 37:115126.Google Scholar
Elton, S. 2002. A reappraisal of the locomotion and habitat preference of Theropithecus oswaldi. Folia Primatologica 73:252280.CrossRefGoogle ScholarPubMed
Elton, S. 2006. 40 years on and still going strong: the use of the hominin-cercopithecid comparison in human evolution. Journal of the Royal Anthropological Institute 12:1938.CrossRefGoogle Scholar
Ewer, R. F. 1973. The carnivores. Cornell University Press, Ithaca, N.Y.Google Scholar
Farlow, J. O., and Pianka, E. R. 2002. Body size overlap, habitat partitioning and living space requirements of terrestrial vertebrate predators: implications for the paleoecology of large theropod dinosaurs. Historical Biology 16:2140.CrossRefGoogle Scholar
Fernàndez-Jalvo, Y., Denys, C., Andrews, P., Williams, T., Dauphin, Y., and Humphrey, L. 1998. Taphonomy and palaeoecology of Olduvai Bed-I (Pleistocene, Tanzania). Journal of Human Evolution 34:137172.CrossRefGoogle Scholar
Garland, T. Jr., and Janis, C. M. 1993. Does metatarsal/femur ratio predict the maximal running speed in cursorial mammals? Journal of Zoology 229:133151.CrossRefGoogle Scholar
Gittleman, J. L. 1985. Carnivore body size: ecological and taxonomic correlates. Oecologia 67:540554.CrossRefGoogle ScholarPubMed
Gittleman, J. L.ed. 1989. Carnivore behavior, ecology, and evolution, Vol. 1. Cornell University Press, Ithaca, N.Y.Google Scholar
Gittleman, J. L., and Harvey, P. H. 1982. Carnivore home-range size, metabolic needs and ecology. Behavioral Ecology and Sociobiology 10:5263.CrossRefGoogle Scholar
Gittleman, J. L., and Van Valkenburgh, B. 1997. Sexual size dimorphism in the canines and skulls of carnivores: effects of size, phylogeny, and behavioural ecology. Journal of Zoology 242:97117.CrossRefGoogle Scholar
Gonyea, W. J. 1976. Behavioral implications of saber-toothed felid morphology. Paleobiology 2:332342.CrossRefGoogle Scholar
Hair, J. F., Anderson, R. E., Tatham, R. L., and Black, W. C. 1998. Multivariate data analysis, 5th ed. Hall, Prentice, Upper Saddle River, N.J.Google Scholar
Hernández Fernández, M. 2001. Bioclimatic discriminant capacity of terrestrial mammal faunas. Global Ecology and Biogeography 10:189204.CrossRefGoogle Scholar
Hernández Fernández, M., and Peláez-Campomanes, P. 2003. The bioclimatic model: a method of palaeoclimatic qualitative inference based on mammal associations. Global Ecology and Biogeography 12:507517.CrossRefGoogle Scholar
Hernández Fernández, M., and Vrba, E. 2006. Plio-Pleistocene climate change in the Turkana Basin (East Africa): evidence from large mammal faunas. Journal of Human Evolution 50:595626.CrossRefGoogle ScholarPubMed
Hernández Fernández, M., Alberdi, M., Azanza, B., Montoya, P., Morales, J., Nieto, M., and Peláez-Campomanes, P. 2006. Identification problems of arid environments in the Neogene-Quaternary mammal record of Spain. Journal of Arid Environments 66:585608.CrossRefGoogle Scholar
Holliday, J. A., and Steppan, S. J. 2004. Evolution of hypercarnivory: the effect of specialization on morphological and taxonomic diversity. Paleobiology 30:108128.2.0.CO;2>CrossRefGoogle Scholar
IUCN 2009. The IUCN red list of threatened species, Version 2009.1.Google Scholar
Janis, C. M., and Wilhem, P. B. 1993. Were there mammalian pursuit predators in the Tertiary? Dances with wolf avatars. Journal of Mammalian Evolution 1:103125.CrossRefGoogle Scholar
Kappelman, J. 1988. Morphology and locomotor adaptations of the bovid femur in relation to habitat. Journal Morphology 198:119130.CrossRefGoogle ScholarPubMed
Kappelman, J., Plummer, T., Bishop, L., Duncan, A., and Appleton, S. 1997. Bovids as indicators of Plio-Pleistocene paleoenvironments in East Africa. Journal Human Evolution 32:229256.CrossRefGoogle ScholarPubMed
Kitchener, A. C. 1991. The natural history of the wild cats. Comstock Associates, Ithaca, N.Y.Google Scholar
Kitchener, A. C., Van Valkenburgh, B., and Yamaguchi, N. 2010. Felid form and function. Pp. 83106inMacdonald, D. W. and Loveridge, A. J., eds. Biology and conservation of wild felids. Oxford University Press, Oxford.Google Scholar
Kovarovic, K. M., and Andrews, P. 2007. Bovid postcranial ecomorphological survey of the Laetoli paleoenvironment. Journal of Human Evolution 52:663680.CrossRefGoogle ScholarPubMed
Kovarovic, K., Aiello, L. C., Cardini, A., and Lockwood, C. A. 2011. Discriminant function analyses in archaeology: are classification rates too good to be true? Journal of Archaeological Science 38:30063018.CrossRefGoogle Scholar
Kurtén, B., and Werdelin, L. 1990. Relationships between North and South American Smilodon. Journal of Vertebrate Paleontology 10:158169.CrossRefGoogle Scholar
Lewis, M. E. 1997. Carnivoran paleoguilds of Africa: implications for hominid food procurement strategies. Journal of Human Evolution 32:257288.CrossRefGoogle ScholarPubMed
Lewis, M. E., and Lague, M. R. 2010. Interpreting sabretooth cat (Carnivora; Felidae; Machairodontinae) postcranial morphology in light of scaling patterns. Pp. 411465inGoswami, A. and Friscia, A. R., eds. Carnivoran evolution: new views on phylogeny, form and function. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Louys, J., Meloro, C., Elton, S., Ditchfield, P., and Bishop, L. C. 2011. Mammal community structure correlates with arboreal heterogeneity in faunally and geographically diverse habitats: implications for community convergence. Global Ecology and Biogeography 20:717729.CrossRefGoogle Scholar
Louys, J., Montanari, S., Plummer, T., Hertel, F., and Bishop, L. C., 2012. Evolutionary divergence and convergence in shape and size within African antelope proximal phalanges. Journal of Mammalian Evolution. doi: 10.1007/s10914-012-9211-4.CrossRefGoogle Scholar
Macdonald, D. W., Loveridge, A. J., and Nowell, K. 2010. Dramatis personae: an introduction to the wild felids. Pp. 358inMacdonald, D. W. and Loveridge, A. J., eds. Biology and conservation of wild felids. Oxford University Press, Oxford.Google Scholar
Martin, L. D. 1989. Fossil history of terrestrial Carnivora. Pp. 536568in Gittleman 1989.CrossRefGoogle Scholar
McHenry, C. R., Wroe, S., Clausen, P. D., Moreno, K., and Cunningham, E. 2007. Supermodeled sabercat, predatory behavior in Smilodon fatalis revealed by high-resolution 3D computer simulation. Proceedings of the National Academy of Sciences USA 104:1601016015.CrossRefGoogle ScholarPubMed
Meachen-Samuels, J. 2012. Morphological convergence of the prey-killing arsenal of sabertooth predators. Paleobiology 38:114.CrossRefGoogle Scholar
Meachen-Samuels, J., and Van Valkenburgh, B. 2009. Forelimb indicators of prey-size preference in the Felidae. Journal of Morphology 270:729744.CrossRefGoogle ScholarPubMed
Meachen-Samuels, J., and Van Valkenburgh, B. 2010. Radiographs reveal exceptional forelimb strength in the sabertooth cat, Smilodon fatalis. PLoS ONE 5:e11412.CrossRefGoogle ScholarPubMed
Meloro, C. 2011a. Feeding habits of Plio-Pleistocene large carnivores as revealed by their mandibular geometry. Journal of Vertebrate Paleontology 31:428446.CrossRefGoogle Scholar
Meloro, C. 2011b. Locomotor adaptations in Plio-Pleistocene large carnivores from the Italian Peninsula: palaeoecological implications. Current Zoology 57:269283.CrossRefGoogle Scholar
Meloro, C., and O'Higgins, P. 2011. Ecological adaptations of mandibular form in Fissiped Carnivora. Journal of Mammalian Evolution 18:185200.CrossRefGoogle Scholar
Meloro, C., and Raia, P. 2010. Cats and dogs down the tree: the tempo and mode of evolution in the lower carnassial of fossil and living Carnivora. Evolutionary Biology 37:177186.CrossRefGoogle Scholar
Navarro, N., Zatarain, X., and Mountuire, S. 2004. Effects of morphometric descriptor changes on statistical classification and morphospaces. Biological Journal of the Linnean Society 83:243260.CrossRefGoogle Scholar
Nowell, K., and Jackson, P. 2006. Wild cats: status survey and conservation action plan. IUCN Produced Services Unit, Cambridge, U.K.Google Scholar
Olson, D., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D'amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., and Kassem, K. R. 2001. Terrestrial ecoregions of the world. Bioscience 51:933938.CrossRefGoogle Scholar
O'Regan, H. J., and Kitchener, A. 2005. The effects of captivity on the morphology of captive, domesticated and feral mammals. Mammal Review 34:215230.CrossRefGoogle Scholar
Ortolani, A., and Caro, T. M. 1996. The adaptive significance of color patterns in carnivores: Phylogenetic tests of classic hypotheses. Pp. 132188inGittleman, J. L., ed. Carnivore behavior, ecology, and evolution, Vol. 2. Comstock, Ithaca, N.Y.Google Scholar
Palmqvist, P., Torregrosa, V., Pérez-Claros, J. A., Martínez-Navarro, B., and Turner, A. 2007. A re-evaluation of the diversity of Megantereon (Mammalia, Carnivora, Machairodontinae) and the problem of species identification in extinct carnivores. Journal of Vertebrate Paleontology 27:160175.CrossRefGoogle Scholar
Plummer, T. W., and Bishop, L. C. 1994. Hominid palaeoecology at Olduvai Gorge, Tanzania as indicated by antelope remains. Journal of Human Evolution 27:4775.CrossRefGoogle Scholar
Plummer, T. W., Bishop, L. C., and Hertel, F. 2008. Habitat preference of extant African bovids based on astragalus morphology: operationalizing ecomorphology for palaeoenvironmental reconstruction. Journal of Archaeological Science 35:30163027.CrossRefGoogle Scholar
Plummer, T. W., Ditchfield, P. W., Bishop, L. C., Kingston, J. D., Ferraro, J. V., Braun, D. R., Hertel, F., and Potts, R. 2009. Oldest evidence of toolmaking hominins in a grassland-dominated ecosystem. PLoS ONE 4:e7199.CrossRefGoogle Scholar
Polly, P. D., and Macleod, N. 2008. Locomotion in fossil Carnivora: an application of eigensurface analysis for morphometric comparison of 3D surfaces. Palaeontologia Electronica 11.2.8A.Google Scholar
Polly, P. D. 2008. Adaptive zones and the pinniped ankle: a 3D quantitative analysis of carnivoran tarsal evolution. Pp. 165194inSargis, E. and Dagosto, M., eds. Mammalian evolutionary morphology: a tribute to Frederick S. Szalay. Springer, Dordrecht.Google Scholar
Polly, P. D. 2010. Tiptoeing through the trophics: geographic variation in carnivoran locomotor ecomorphology in relation to environment. Pp. 374410inGoswami, A. and Friscia, A., eds. Carnivoran evolution: new views on phylogeny, form and function. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Reighard, J., and Jennings, H. S. 1901. Anatomy of the cat. Henry Holt, New York.CrossRefGoogle Scholar
Salesa, M. J., Antón, M., Turner, A., and Morales, J. 2005. Aspects of the functional morphology in the cranial and cervical skeleton of the sabre-toothed cat Paramachairodus ogygia (Kaup, 1832) (Felidae, Machairodontinae) from the Late Miocene of Spain: implications for the origins of the machairodont killing bite. Zoological Journal of the Linnean Society 144:363377.CrossRefGoogle Scholar
Salesa, M. J., Antón, M., Turner, A., and Morales, J. 2006. Inferred behaviour and ecology of the primitive sabretoothed cat Paramachairodus ogygia (Felidae, Machairodontinae) from the Late Miocene of Spain. Journal of Zoology 268:243254.CrossRefGoogle Scholar
Salesa, M. J., Antón, M., Turner, A., and Morales, J. 2009. Functional anatomy of forelimb in Pristinosmilus ogygia (Felidae, Machairodontinae, Smilodontini) from the Late Miocene of Spain and the origins of the sabre-toothed felid model. Journal of Anatomy 216:381396.CrossRefGoogle ScholarPubMed
Samuels, J. X., Meachen, J. A., and Sakai, S. A. 2012. Postcranial morphology and the locomotor habits of living and extinct carnivorans. Journal of Morphology 274:121146.CrossRefGoogle ScholarPubMed
Schutz, H., and Guralnik, R. P. 2007. Postcranial element shape and function: assessing locomotor mode in extant and extinct mustelid carnivorans. Zoological Journal of the Linnean Society 150:895914.CrossRefGoogle Scholar
Slater, J. G., and Van Valkenburgh, B. 2008. Long in the tooth: evolution of sabertooth cat cranial shape. Paleobiology 34:403419.CrossRefGoogle Scholar
Sunquist, M., and Sunquist, F. 2002. Wild cats of the world. University of Chicago Press, Chicago.CrossRefGoogle Scholar
Turner, A., and Antón, M. 1997. The big cats and their fossil relatives. Columbia University Press, New York.Google Scholar
Van Valkenburgh, B. 1985. Locomotor diversity between past and present guilds of large predatory mammals. Paleobiology 11:406428.CrossRefGoogle Scholar
Van Valkenburgh, B. 1987. Skeletal indicators of locomotor behavior in living and extinct carnivores. Journal of Vertebrate Paleontology 7:62182.CrossRefGoogle Scholar
Van Valkenburgh, B. 1988. Trophic diversity in past and present guilds of large predatory mammals. Paleobiology 14:155173.CrossRefGoogle Scholar
Van Valkenburgh, B. 1989. Carnivore dental adaptations and diet: a study of trophic diversity within guilds. Pp. 410436in Gittleman 1989.CrossRefGoogle Scholar
Van Valkenburgh, B. 1999. Major patterns in the history of carnivorous mammals. Annual Review of Earth and Planetary Sciences 27:463–93.CrossRefGoogle Scholar
Van Valkenburgh, B. 2007. Déjà vu: the evolution of feeding morphologies in the Carnivora. Integrative and Comparative Biology 47:147163.CrossRefGoogle ScholarPubMed
Walmsley, A., Elton, S., Louys, J., Bishop, L. C., and Meloro, C. 2012. Humeral epiphyseal shape in the Felidae: the influence of phylogeny, allometry, and locomotion. Journal of Morphology 273:14241438.CrossRefGoogle ScholarPubMed
Werdelin, L., and Lewis, M. E. 2001. A revision of the genus Dinofelis (Mammalia, Felidae). Zoological Journal of the Linnean Society 132:147258.CrossRefGoogle Scholar
Wroe, S., McHenry, C., and Thomason, J. 2005. Bite club: comparative bite force in big biting mammals and the prediction of predatory behaviour in fossil taxa. Proceeding of the Royal Society of London B 272:619625.Google ScholarPubMed