Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T06:36:14.304Z Has data issue: false hasContentIssue false

Artificial time-averaging of marsh foraminiferal assemblages: linking the temporal scales of ecology and paleoecology

Published online by Cambridge University Press:  08 April 2016

Ronald E. Martin
Affiliation:
Department of Geology, University of Delaware, Newark, Delaware 19716. E-mail: [email protected]
Scott P. Hippensteel
Affiliation:
Department of Geology, University of Delaware, Newark, Delaware 19716. E-mail: [email protected]
Daria Nikitina
Affiliation:
Department of Geology, University of Delaware, Newark, Delaware 19716. E-mail: [email protected]
James E. Pizzuto
Affiliation:
Department of Geology, University of Delaware, Newark, Delaware 19716. E-mail: [email protected]

Abstract

Multiple regression models were developed for seasonal test inputs to, and preservation of, marsh foraminiferal assemblages for a two-year period at Bombay Hook National Wildlife Refuge (BHNWR; Smyrna, Delaware). Seasonal assemblages were quite variable and yielded poor regression models. However, signal/noise ratios were amplified using artificially time-averaged (ATA) assemblages, in which separate dead and live abundances of the most abundant species were summed for all seasons. Regression models that used ATA species abundances to retrodict original sample depths accounted for up to ~99% (p < 0.0001) and ~91% (p < 0.023) of the variation of dead and live ATA assemblages, respectively, and usually retrodicted sample depths within 2–3 cm of actual depths.

Artificially time-averaged assemblages were also used to extract multidecadal- to centennial-scale sea-level signals from near-surface assemblages at BHNWR formed during the past few centuries. The BHNWR sea-level curve closely resembles one previously published for marshes in Clinton, Connecticut (also based on foraminifera). The technique of artificial time-averaging therefore links the temporal scales of ecology and paleobiology by extracting high-resolution paleoenvironmental signals preserved in the fossil record.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Behrensmeyer, A. K., and Chapman, R. E. 1993. Models and simulations of time-averaging in terrestrial vertebrate accumulations. In Kidwell, S. M. and Behrensmeyer, A. K., eds. Taphonomic approaches to time resolution in fossil assemblages. Short Courses in Paleontology 6:125149. Paleontological Society, Knoxville, Tenn.Google Scholar
Bennington, J. B., and Rutherford, S. D. 1999. Precision and reliability in paleocommunity comparisons based on cluster-confidence intervals: how to get more statistical bang for your sampling buck. Palaios 14:506515.Google Scholar
Brown, J. H. 1995. Macroecology. University of Chicago Press, Chicago.Google Scholar
Buzas, M. A., Hayek, L.-C., Reed, S. A., and Jett, J. A. 2002. Foraminiferal densities over five years in the Indian River Lagoon, Florida: a model of pulsating patches. Journal of Foraminiferal Research 32:6893.Google Scholar
Cohen, A. S. 1998. Reflections on community ecology and the community of ecology: the view from a 1998 Penrose conference on “Linking Spatial and Temporal Scales in Paleoecology and Ecology.” Palaios 13:603605.CrossRefGoogle Scholar
Davis, J. A. 1986. Statistics and data analysis in geology. Wiley, New York.Google Scholar
Draper, N. R., and Smith, H. 1981. Applied regression analysis. Wiley, New York.Google Scholar
Flessa, K. W., and Kowalewski, M. 1994. Shell survival and time-averaging in nearshore and shelf environments: estimates from the radiocarbon literature. Lethaia 27:153165.Google Scholar
Flessa, K. W., Cutler, A. H., and Meldahl, K. H. 1993. Time and taphonomy: quantitative estimates of time-averaging and stratigraphic disorder in a shallow marine habitat. Paleobiology 19:266286.Google Scholar
Fletcher, C. H., Van Pelt, J. E., Brush, G. S., and Sherman, J. 1993. Tidal wetland record of Holocene sea-level movements and climate history. Palaeogeography, Palaeoclimatology, Palaeoecology 102:177213.Google Scholar
Goldstein, S. T., Watkins, G. T., and Kuhn, R. M. 1995. Microhabitats of salt marsh foraminifera: St. Catherines Island, Georgia, USA. Marine Micropaleontology 26:1729.Google Scholar
Greenstein, B. J., and Pandolfi, J. M. 1997. Preservation of community structure in modern coral life and death assemblages of the Florida Keys: implications for the Quaternary fossil record of coral reefs. Bulletin of Marine Science 61:431452.Google Scholar
Hayek, L.-A. C., and Buzas, M. A. 1997. Surveying natural populations. Columbia University Press, New York.Google Scholar
Hippensteel, S. P., Martin, R. E., Nikitina, D., and Pizzuto, J. E. 2000. The formation of Holocene marsh foraminiferal assemblages, Middle Atlantic Coast, U.S.A.: implications for Holocene sea-level change. Journal of Foraminiferal Research 30:272293.Google Scholar
Hippensteel, S. P., Martin, R. E., Nikitina, D., and Pizzuto, J. E. 2002. Interannual variation of marsh foraminiferal assemblages (Bombay Hook National Wildlife Refuge, Smyrna, DE): do foraminiferal assemblages have a memory? Journal of Foraminiferal Research 32:96108.Google Scholar
Imbrie, J., Hays, J. D., Martinson, D. G., McIntyre, A. I., Mix, A., Morley, J. J., Pisias, N. G., Prell, W. L., and Shackleton, N. J. 1984. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18o record. Pp. 269305in Berger, A. et al., eds. Milankovitch and climate, Part I. Reidel, Dordrecht.Google Scholar
Jones, J. R., and Cameron, B. 1987. Surface distribution of foraminifera in a New England salt marsh: Plum Island, Massachusetts. Maritime Sediments and Atlantic Geology 23:131140.Google Scholar
Kidwell, S. M., and Behrensmeyer, A. K. 1993. Taphonomic approaches to time resolution in fossil assemblages. In Kidwell, S. M. and Behrensmeyer, A. K., eds. Taphonomic approaches to time resolution in fossil assemblages. Short Courses in Paleontology 6:18. Paleontological Society, Knoxville, Tenn.Google Scholar
Kidwell, S. M., and Bosence, D. W. J. 1991. Taphonomy and time-averaging of marine shelly faunas. Pp. 116209in Allison, P. A. and Briggs, D. E. G., eds. Taphonomy: releasing the data locked in the fossil record. Plenum, New York.Google Scholar
Kidwell, S. M., and Flessa, K. W. 1995. The quality of the fossil record: populations, species, and communities. Annual Review of Ecology and Systematics 26:269299.Google Scholar
Kohl, J., and Martin, R. E. 1999. Bioturbation rates in Delaware salt marshes: implications for the recognition of ecological signals. Geological Society of America Abstracts with Programs 31:A356.Google Scholar
Kowalewski, M., Serrano, G. E. A., Flessa, K. W., and Goodfriend, G. A. 2000. Dead delta's former productivity: two trillion shells at the mouth of the Colorado River. Geology 28:10591062.Google Scholar
Loubere, P., Meyers, P., and Gary, A. 1995. Benthic foraminiferal microhabitat selection, carbon isotope values, and association with larger animals: a test with Uvigerina peregrina. Journal of Foraminiferal Research 25:8395.Google Scholar
Martin, R. E. 1999. Taphonomy: a process approach. Cambridge University Press, Cambridge.Google Scholar
Martin, R. E. 2000. Environmental micropaleontology: the application of microfossils to environmental geology. Kluwer Academic/Plenum, New York.Google Scholar
Martin, R. E., and Liddell, W. D. 1988. Foraminiferal biofacies on a north coast fringing reef (1–75 m), Discovery Bay, Jamaica. Palaios 3:298314.Google Scholar
Martin, R. E., and Liddell, W. D. 1989. Relation of counting methods to taphonomic gradients and biofacies zonation of foraminiferal sediment assemblages. Marine Micropaleontology 15:6789.Google Scholar
Martin, R. E., Harris, M. S., and Liddell, W. D. 1995. Taphonomy and time-averaging of foraminiferal assemblages in Holocene tidal flat sediments, Bahía la Choya, Sonora, Mexico (northern Gulf of California). Marine Micropaleontology 26:187206.Google Scholar
Martin, R. E., Hippensteel, S. P., Nikitina, D., and Pizzuto, J. E.In press. Taphonomy and artificial time-averaging of marsh foraminiferal assemblages (Bombay Hook National Wildlife Refuge, Smyrna, DE): implications for rates and magnitudes of late Holocene sea-level change. In Leckie, R. M. and Olson, H. C., eds. Paleobiological, geochemical, and other proxies of sea level change. SEPM Special Publication. Tulsa, Okla.Google Scholar
Martin, R. E., Wehmiller, J. F., Harris, M. S., and Liddell, W. D. 1996. Comparative taphonomy of foraminifera and bivalves in Holocene shallow-water carbonate and siliciclastic regimes: taphonomic grades and temporal resolution. Paleobiology 22:8090.Google Scholar
Maurer, B. A. 1999. Untangling ecological complexity: the macroscopic perspective. University of Chicago Press, Chicago.Google Scholar
McKinney, M. L., and Drake, J. A. 1998. Biodiversity dynamics: turnover of populations, taxa, and communities. Columbia University Press, New York.Google Scholar
Muro, M. 2000. Colorado river clams provide benchmark. Science 290:20452046.Google Scholar
Murray, J. W. 2000a. When does environmental variability become environmental change? The proxy record of benthic foraminifera. Pp. 737in Martin, R. E., ed. Environmental micropaleontology: the application of microfossils to environmental geology. Kluwer Academic/Plenum, New York.Google Scholar
Murray, J. W. 2000b. The enigma of the continued use of total assemblages in ecological studies of benthic foraminifera. Journal of Foraminiferal Research 30:244245.CrossRefGoogle Scholar
Olszewski, T. 1999. Taking advantage of time-averaging. Paleobiology 25:226238.Google Scholar
Patterson, R. T., Guilbault, J.-P., and Clague, J. C. 1999. Taphonomy of tidal marsh foraminifera: implications of surface sample thickness for high-resolution sea-level studies. Palaeogeography, Palaeoclimatology, Palaeoecology 149:199211.Google Scholar
Ryan, B. F., Joiner, B. L., and Ryan, T. A. 1985. Minitab handbook. Duxbury, Boston.Google Scholar
SAS. 1985. User's guide: statistics. SAS, Cary, N.C.Google Scholar
Scott, D. B., and Medioli, F. S. 1980a. Quantitative studies on marsh foraminiferal distributions in Nova Scotia: implications for sea level studies. Cushman Foundation for Foraminiferal Research Special Publication 17. Washington, D.C.Google Scholar
Scott, D. B., and Medioli, F. S. 1980b. Living vs. total foraminiferal populations: their relative usefulness in paleoecology. Journal of Paleontology 54:814831.Google Scholar
Scott, D. B., and Medioli, F. S. 1986. Foraminifera as sea-level indicators. Pp. 435455in van de Plassche, O., ed. Sea-level research: a manual for the collection of data. Geo Books, Norwich, England.Google Scholar
Sheriff, R. E. 1980. Seismic stratigraphy. International Human Resources Development Corporation, Boston.Google Scholar
Starratt, S. W. 1995. Bioterminators: is there a relationship between ichnofabric and microfossil distribution? Geological Society of America Abstracts with Programs 27:A30.Google Scholar
Swan, A. R. H., and Sandilands, M. 1995. Introduction to geological data analysis. Blackwell Science, Oxford.Google Scholar
Van de Plassche, O., van der Borg, K., and de Jong, A. F. M. 1998a. Sea level-climate change correlation during the past 1400 yr. Geology 26:319322.Google Scholar
Van de Plassche, O., van der Borg, K., and de Jong, A. F. M. 1998b. Correction: sea level-climate correlation during the past 1400 yr: reply to Varekamp et al. Geology 26:672.Google Scholar
Van de Plassche, O., van der Borg, K., and de Jong, A. F. M. 1999. Sea level-climate correlation during the past 1400 yr: reply to Varekamp et al. Geology 27:190.Google Scholar
Varekamp, J. C., Thomas, E., and van de Plassche, O. 1992. Relative sea-level rise and climate change over the last 1500 years. Terra Nova 4:293304.Google Scholar
Varekamp, J. C., Thomas, E., and Thompson, W. G. 1999. Sea level-climate correlation during the past 1400 yr: comment. Geology 27:189190.2.3.CO;2>CrossRefGoogle Scholar
Walker, K. R., and Bambach, R. K. 1971. The significance of fossil assemblages from fine-grained sediments. Geological Society of America Abstracts with Programs 3:A783784.Google Scholar
Walker, S. E., and Goldstein, S. T. 1999. Taphonomic tiering: experimental field taphonomy of molluscs and foraminifera above and below the sediment-water interface. Palaeogeography, Palaeoclimatology, Palaeoecology 149:227244.Google Scholar