Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T00:03:32.712Z Has data issue: false hasContentIssue false

The precipitous decline of the ortolan bunting Emberiza hortulana: time to build on scientific evidence to inform conservation management

Published online by Cambridge University Press:  02 December 2011

Myles H. M. Menz*
Affiliation:
Division of Conservation Biology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012 Bern, Switzerland.
Raphaël Arlettaz
Affiliation:
Division of Conservation Biology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012 Bern, Switzerland.
*
Division of Conservation Biology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012 Bern, Switzerland. E-mail [email protected]
Rights & Permissions [Opens in a new window]

Abstract

In recent decades there has been a marked decline in most ortolan bunting Emberiza hortulana populations in temperate Europe, with many regional populations now extinct or on the brink of extinction. In contrast, Mediterranean and, as far as we know, eastern European popula-tions seem to have remained relatively stable. The causes of decline remain unclear but include: habitat loss and degradation, and related reduction in prey availability; climate change on the breeding grounds; altered population dynamics; illegal captures during migration; and environmental change in wintering areas. We review the current knowledge of the biology of the ortolan bunting and discuss the proposed causes of decline in relation to the different population trends in temperate and Mediterranean Europe. We suggest new avenues of research to identify the factors limiting ortolan bunting populations. The main evidence-based conservation measure that is likely to enhance habitat quality is the creation of patches of bare ground to produce sparsely vegetated foraging grounds in invertebrate-rich grassy habitats close to breeding areas.

Type
Review
Copyright
Copyright © Fauna & Flora International 2011

Introduction

Migratory birds, in particular long-distance migrants, are vulnerable to environmental change in multiple regions (Sanderson et al., Reference Sanderson, Donald, Pain, Burfield and van Bommel2006; Both et al., Reference Both, Van Turnhout, Bijlsma, Siepel, Van Strien and Foppen2010). The ortolan bunting Emberiza hortulana is the only long-distance trans-Saharan migrant among old world buntings (Cramp & Perrins, Reference Cramp and Perrins1994; Glutz von Blotzheim & Bauer, Reference Glutz von Blotzheim, Bauer and Glutz von Blotzheim1997). The species has undergone the second most pronounced decline of any bird species in temperate Western Europe in recent decades, with an estimated 82% population reduction between 1980 and 2008 (Klvanova et al., Reference Klvanova, Skorpilova, Vorisek, Gregory and Burfield2010), although the decline began earlier in some places (Conrads, Reference Conrads1977; Lang et al., Reference Lang, Bandorf, Dornberger, Klein and Mattern1990; Meier-Peithmann, Reference Meier-Peithmann1992; Dale, Reference Dale1997). Ortolan bunting populations have recently crashed across northern Europe and Scandinavia (van Noorden, Reference van Noorden1991, Reference van Noorden1999; Vepsäläinen et al., Reference Vepsäläinen, Pakkala, Piha and Tiainen2005; Ottvall et al., Reference Ottvall, Green, Lindström, Svensson, Esseen and Marklund2008) and the species has effectively become extinct as a breeding species within the last decade in Belgium, The Netherlands (van Noorden, Reference van Noorden1991, Reference van Noorden1999; Vieuxtemps & Jacob, Reference Vieuxtemps and Jacob2002; van Dijk et al., Reference van Dijk, Hustings, Koffijberg, van der Weide, Deuzeman, Zoetebier and Plate2005) and Switzerland (Revaz et al., Reference Revaz, Posse, Gerber, Sierro and Arlettaz2005; Menz et al., Reference Menz, Mosimann-Kampe and Arlettaz2009b), with mostly unpaired singing males remaining in these populations. The species has apparently remained stable in Eastern Europe (BirdLife International, 2004), and the only notable increase has been in Catalonia, in the Mediterranean (Pons, Reference Pons, Estrada, Pedrocchi, Brotons and Herrando2004; Brotons et al., Reference Brotons, Herrando and Pons2008).

Although the life history of the ortolan bunting is generally well resolved we lack consolidated information about the species’ key ecological requirements and most conservation action for the species is based on expert opinion rather than scientific evidence. Thus, there is uncertainty about the optimal conservation measures to implement. Given the challenges of integrating research programmes across regions and countries clear direction is required for appropriate conservation research for the ortolan bunting. In this review we: (1) synthesize existing knowledge of the biology of the ortolan bunting, (2) discuss the proposed causes of the species’ decline, (3) propose priorities for future research to inform conservation action, and (4) provide preliminary evidence-based management recommendations from the information currently available (Pullin & Knight, 2001).

Literature searches were primarily on the ISI Web of Science, the Ornithological Worldwide Literature database (OWL, 2010), and reference lists from published articles. The review of threatening processes considered articles published after 1950 as this is believed to be the year in which many population declines began (Lang et al., Reference Lang, Bandorf, Dornberger, Klein and Mattern1990; Meier-Peithmann, Reference Meier-Peithmann1992; Dale, Reference Dale1997).

Ecology of the ortolan bunting

Habitat requirements

In Mediterranean and sub-Mediterranean Europe the species breeds primarily in open shrubland and steppe-like habitat, particularly on south-facing slopes (Cramp & Perrins, Reference Cramp and Perrins1994; Glutz von Blotzheim & Bauer, Reference Glutz von Blotzheim, Bauer and Glutz von Blotzheim1997; Fonderflick et al., 2005; Brotons et al., Reference Brotons, Herrando and Pons2008). Here, the species favours areas with shrub and tree cover of c. 20–30% (Kölsch, Reference Kölsch1959; Keusch, Reference Keusch1991; Menz et al., Reference Menz, Brotons and Arlettaz2009a) and rarely occurs where tree cover exceeds 30–50% (Fonderflick et al., Reference Fonderflick, Thévenot and Guillaume2005; Fonderflick, Reference Fonderflick2006). In temperate Europe the species breeds primarily in agricultural habitats, particularly areas of small-scale cultivation, set-asides, short-rotation coppice and shrublands in historically burnt habitats, with these habitats often co-occurring (e.g. Berg & Pärt, 1994; Dale & Hagen, Reference Dale and Hagen1997; Berg, Reference Berg2002; Dale & Olsen, Reference Dale and Olsen2002; Goławski & Dombrowski, Reference Goławski and Dombrowski2002; Revaz et al., Reference Revaz, Posse, Gerber, Sierro and Arlettaz2005). In farmland the species favours field margins with structural elements such as isolated trees, hedges and nearby forest margins (Meier-Peithmann, Reference Meier-Peithmann1992; Grützmann et al., Reference Grützmann, Moritz, Südbeck and Wendt2002), a characteristic shared by several farmland bunting species (Brambilla et al., Reference Brambilla, Guidali and Negri2008, Reference Brambilla, Guidali and Negri2009).

Within both natural and agricultural landscapes the ortolan bunting breeds primarily in relatively warm, dry areas, with well-drained soils and an annual rainfall below 600–700 mm (Cramp & Perrins, Reference Cramp and Perrins1994; Grützmann et al., Reference Grützmann, Moritz, Südbeck and Wendt2002), avoiding wet habitats (e.g. Nævra, Reference Nævra2002; Dale & Manceau, Reference Dale and Manceau2003; Hänel, Reference Hänel2004; Deutsch, Reference Deutsch2007). Exceptions include populations occurring in areas with extremely well-drained soils and steep, sloping topography (Conrads, Reference Conrads1977). Ortolan buntings nest on the ground, typically producing only one brood per season, with exceptional replacement clutches and second broods (Garling, Reference Garling1943; Conrads, Reference Conrads1969; Hänel, Reference Hänel2004).

Ortolan bunting populations typically consist of loose aggregations of breeding pairs (Vepsäläinen et al., Reference Vepsäläinen, Pakkala, Piha and Tiainen2007). Local colonization, extinction, and population fluctuations are often observed (Glitz, Reference Glitz1967; Dale & Steifetten, Reference Dale and Steifetten2011), with areas seemingly isolated from other populations also colonized (van Noorden, Reference van Noorden1991, Reference van Noorden1999; Revaz et al., Reference Revaz, Posse, Gerber, Sierro and Arlettaz2005). This could indicate the existence of a broadscale metapopulation structure, with areas being settled or abandoned as habitat suitability fluctuates following major disturbance events (Brotons et al., Reference Brotons, Pons and Herrando2005). Short-term population increases have been observed in response to fire (Brotons et al., Reference Brotons, Pons and Herrando2005, Reference Brotons, Herrando and Pons2008), clearing of vegetation by a storm, forestry interventions, or cultivation (Conrads & Kipp, Reference Conrads and Kipp1980; Nævra, Reference Nævra2002). Sparse vegetation and a large proportion of bare ground are the most noticeable common features of these habitats (Nævra, Reference Nævra2002). The species often becomes locally common after disturbance (Sposimo, Reference Sposimo1988; Pons, Reference Pons, Estrada, Pedrocchi, Brotons and Herrando2004; Revaz et al., Reference Revaz, Posse, Gerber, Sierro and Arlettaz2005) with, for example, populations peaking 3–4 years after fire (Pons & Clavero, Reference Pons and Clavero2010). This relationship is particularly strong in Mediterranean and, to a lesser extent, sub-Mediterranean biomes, where occurrence of fires is still commonplace, and it is also noticeable in temperate Europe where the species also nests on historic burns (e.g. Dale & Olsen, Reference Dale and Olsen2002; Revaz et al., Reference Revaz, Posse, Gerber, Sierro and Arlettaz2005). This indicates that the ortolan bunting behaves like a pioneer species, typically colonizing the early stages of vegetation succession.

Diet

The ortolan bunting has a varied diet, including both plant (seeds) and animal matter (Cramp & Perrins, Reference Cramp and Perrins1994; Glutz von Blotzheim & Bauer, Reference Glutz von Blotzheim, Bauer and Glutz von Blotzheim1997), although the diet of the chicks is restricted to a few dominant prey orders: Lepidoptera, particularly Tortricidae larvae, and Coleoptera in the north of its range (Conrads, Reference Conrads1968, Reference Conrads1969; Hänel, Reference Hänel2004), and Orthoptera, particularly Tettigoniidae, in the south (Kunz, Reference Kunz1950; Keusch & Mosimann, Reference Keusch and Mosimann1984). In Switzerland, Tettigoniidae made up nearly 70% of the total items provisioned to nestlings, a much higher percentage than in the sympatric rock bunting Emberiza cia, which has a more diverse diet (Keusch & Mosimann, Reference Keusch and Mosimann1984). In the north of the range caterpillars are fed to nestlings in the early stages of development, with diet switching towards larger prey in later developmental stages until post-fledging (Kunze, Reference Kunze1954; Knoblauch, Reference Knoblauch1968; Conrads, Reference Conrads1969; Hänel, Reference Hänel2004).

Foraging ecology

Ortolan buntings forage primarily in patches of bare ground within sparsely vegetated habitats (Stolt, Reference Stolt1974; Gnielka, Reference Gnielka1987; Boitier, Reference Boitier2001; Menz et al., Reference Menz, Mosimann-Kampe and Arlettaz2009b). However, prey such as caterpillars are also collected from fields (Conrads, Reference Conrads1969), or gleaned from tree crown foliage, particularly oaks Quercus spp. (Knoblauch, Reference Knoblauch1968; Conrads, Reference Conrads1969; Stolt, Reference Stolt1974; Gnielka, Reference Gnielka1987), which harbour a relatively high density of caterpillars compared to other tree species (Naef-Daenzer, Reference Naef-Daenzer2000). Adult males sometimes forage in the same oaks used as song posts (Hänel, Reference Hänel2004). Consequently, song post selection may function as a signal of territory quality, as oaks appear to be over-represented as song posts, compared to local availability of other tree species (M.H.M. Menz, pers. obs.).

In Switzerland most Tettigoniidae fed to nestlings are captured on the ground (Keusch & Mosimann, Reference Keusch and Mosimann1984) and in Germany Coleoptera are collected on paths or in cereal fields (Knoblauch, Reference Knoblauch1968). Tettigoniidae are most abundant in relatively dense steppe grass or bushes (Arlettaz et al., Reference Arlettaz, Perrin and Hausser1997). However, ortolan buntings do not necessarily forage in habitats with highest prey abundance but rather in those with a high proportion of bare ground (Menz et al., Reference Menz, Mosimann-Kampe and Arlettaz2009b), as observed in other ground foraging birds (Wilson et al., Reference Wilson, Whittingham and Bradbury2005; Schaub et al., Reference Schaub, Martinez, Tagmann-Ioset, Weisshaupt, Maurer and Reichlin2010). Prey accessibility, therefore, rather than abundance, drives foraging habitat selection (Menz et al., Reference Menz, Mosimann-Kampe and Arlettaz2009b; Schaub et al., Reference Schaub, Martinez, Tagmann-Ioset, Weisshaupt, Maurer and Reichlin2010).

In temperate Europe foraging often takes place in cultivated fields, sometimes a distance away from breeding areas (Dale, Reference Dale2000; Dale & Olsen, Reference Dale and Olsen2002). Cereal fields, particularly oats, are important for replenishing body fat prior to and upon return from migration, when birds feed on seeds and sprouting plants (Keusch, Reference Keusch1991; Grützmann et al., Reference Grützmann, Moritz, Südbeck and Wendt2002). Oat is probably favoured because of the high energy content of the grain (Glutz von Blotzheim, Reference Glutz von Blotzheim1989; Diaz, Reference Diaz1990).

Threats and reasons for decline

Habitat loss and degradation, and reduction in prey availability

Agricultural intensification has resulted in land-use changes such as homogenization of agricultural landscapes, loss of structural heterogeneity and an increased use of pesticides (Newton, Reference Newton2004). A reduction of crop diversity and the transition in cultivation from summer to winter cereals may have contributed to the decline of the ortolan bunting, as such changes will limit the amount of bare ground in cultivated fields. Conversion of rye, and especially oat, to maize cultures has been reported to affect the species negatively (Maes et al., Reference Maes, Gabriëls, Geuens and Meeus1985; Ikemeyer & von Bülow, Reference Ikemeyer and von Bülow1995; van Noorden, Reference van Noorden1999; Grützmann et al., Reference Grützmann, Moritz, Südbeck and Wendt2002; Deutsch, Reference Deutsch2007; Berg, Reference Berg2008), although this has not been quantified. Creation of monoculture agricultural habitats by destruction of structural habitat elements such as tree lines and hedges may be detrimental, as these provide song posts and foraging opportunities (Knoblauch, Reference Knoblauch1968; Vepsäläinen et al., Reference Vepsäläinen, Pakkala, Piha and Tiainen2005). Urbanization has often encroached into small-scale agricultural areas that had typically been preserved close to villages (van Noorden, Reference van Noorden1999), increasing disturbance near to breeding areas (Steiner & Hüni-Luft, Reference Steiner and Hüni-Luft1971).

One of the principal reasons for the observed decline of the ortolan bunting in temperate Europe is probably a reduction in prey availability/accessibility driven by habitat deterioration on the breeding grounds, primarily via changes in agricultural practices (Claessens, Reference Claessens1992; Kutzenberger, Reference Kutzenberger, Tucker and Heath1994; van Noorden, Reference van Noorden1999; Grützmann et al., Reference Grützmann, Moritz, Südbeck and Wendt2002; Revaz et al., Reference Revaz, Posse, Gerber, Sierro and Arlettaz2005; Vepsäläinen et al., Reference Vepsäläinen, Pakkala, Piha and Tiainen2005; Deutsch, Reference Deutsch2007). A reduction in patches of bare ground within foraging areas will result in decreased prey availability (Wilson et al., Reference Wilson, Whittingham and Bradbury2005; Schaub et al., Reference Schaub, Martinez, Tagmann-Ioset, Weisshaupt, Maurer and Reichlin2010) in two ways. Firstly, agricultural intensification includes increased application of fertilizers, which closes the vegetation and suppresses patches of bare ground, and the use of pesticides eliminates invertebrate prey. Secondly, areas of bare ground also vanish following vegetation encroachment through natural succession after abandonment of traditional agricultural practices such as extensive grazing and burning of dry grass (Stolt, Reference Stolt1974; Dale, Reference Dale1997; Nævra, Reference Nævra2002; Revaz et al., Reference Revaz, Posse, Gerber, Sierro and Arlettaz2005; Wilson et al., Reference Wilson, Whittingham and Bradbury2005; Sirami et al., Reference Sirami, Brotons and Martin2007; Menz et al., Reference Menz, Mosimann-Kampe and Arlettaz2009b; de Groot et al., Reference de Groot, Kmecl, Figelj, Figelj, Mihelič and Rubinić2010). There is increasing evidence that reduction in structural heterogeneity and bare ground is threatening a number of ground-foraging farmland bird species (Wilson et al., Reference Wilson, Whittingham and Bradbury2005; Schaub et al., Reference Schaub, Martinez, Tagmann-Ioset, Weisshaupt, Maurer and Reichlin2010).

Climate change on the breeding grounds

Climate change has been proposed as a possible cause of the decline of the ortolan bunting (Knoblauch, Reference Knoblauch1954; Helb, Reference Helb1974; Maes et al., Reference Maes, Gabriëls, Geuens and Meeus1985; Grützmann et al., Reference Grützmann, Moritz, Südbeck and Wendt2002; Vieuxtemps & Jacob, Reference Vieuxtemps and Jacob2002). A low tolerance to cold temperatures (Wallgren, Reference Wallgren1952, Reference Wallgren1954) may increase the risk of physiological stress on breeding birds during inclement weather. Microclimate at the nest site is also likely to have consequences for the growth and survival of the nestlings (Conrads, Reference Conrads1977; Lang et al., Reference Lang, Bandorf, Dornberger, Klein and Mattern1990; Dale, Reference Dale2000; Dale & Olsen, Reference Dale and Olsen2002; Grützmann et al., Reference Grützmann, Moritz, Südbeck and Wendt2002; Vepsäläinen et al., Reference Vepsäläinen, Pakkala, Piha and Tiainen2005), as observed in other bird species (Ullrich, Reference Ullrich1971). Poor weather during the breeding season, such as cold, rainy springs, also lowers reproductive success through nestling mortality from food limitation (Ruge et al., Reference Ruge, Pflüger, Hölzinger, Labus, Gatter and Schmidt1970; Fonderflick & Thévenot, Reference Fonderflick and Thévenot2002), something also observed in other species (Arlettaz et al., Reference Arlettaz, Schaad, Reichlin and Schaub2010).

The earlier growing season predicted under some climate change scenarios may lead to reduced foraging opportunities for ortolan buntings returning to their breeding grounds because of vegetation closure (Lang, Reference Lang2007). The relatively short nestling phase (9–14 days; Cramp & Perrins, Reference Cramp and Perrins1994; Glutz von Blotzheim & Bauer, Reference Glutz von Blotzheim, Bauer and Glutz von Blotzheim1997) means chicks require a large amount of invertebrate prey in a short period (Meier-Peithmann, Reference Meier-Peithmann1992). Ortolan buntings may have evolved a reproductive phenology to coincide with peak prey availability, as seen in some other bird and mammal species (Blondel et al., Reference Blondel, Dervieux, Maistre and Perret1991; Arlettaz & Fournier, Reference Arlettaz and Fournier1993; van Noordwijk et al., Reference van Noordwijk, McCleery and Perrins1995; Arlettaz et al., Reference Arlettaz, Perrin and Hausser1997, Reference Arlettaz, Christe, Lugon, Perrin and Vogel2001). Chicks usually hatch in c. mid June, when Tettigoniidae are abundant and at a profitable size (Kunz, Reference Kunz1950; Arlettaz et al., Reference Arlettaz, Christe, Lugon, Perrin and Vogel2001). Conrads (Reference Conrads1968, Reference Conrads1977) noted breeding was synchronous with sprouting of oak leaves and the appearance of large numbers of defoliating caterpillars, although this was not quantified. Given the short breeding season and nestling phase, and their relatively late return from Africa (Claverie, Reference Claverie1955), altered climate regimes may see a mismatch between breeding period and prey availability (Both et al., Reference Both, Van Turnhout, Bijlsma, Siepel, Van Strien and Foppen2010).

Altered population structure and dynamics

Studies from multiple regions have reported 29–60% of singing ortolan bunting males remain unpaired during the breeding season (Conrads, Reference Conrads1968; Dale, Reference Dale2001; Fonderflick & Thévenot, Reference Fonderflick and Thévenot2002; Steifetten & Dale, Reference Steifetten and Dale2006; Berg, Reference Berg2008). However, even in declining and fluctuating populations breeding success appears to remain stable (Maes, Reference Maes1989; Steifetten & Dale, Reference Steifetten and Dale2006). In small and isolated populations unpaired males may be all that remain prior to population extinction (Dale, Reference Dale2001; Vieuxtemps & Jacob, Reference Vieuxtemps and Jacob2002; Donald, Reference Donald2007; Menz et al., Reference Menz, Mosimann-Kampe and Arlettaz2009b). In Norway populations are limited by a drastic reduction in the number of breeding pairs because of females dispersing away from the population (Dale, Reference Dale2001; Steifetten & Dale, Reference Steifetten and Dale2006), resulting in the male-biased sex-ratio seen in declining populations (Dale et al., Reference Dale, Steifetten, Osiejuk, Losak and Cygan2006). In relatively isolated populations there is little opportunity for recruitment of females from elsewhere (Steifetten & Dale, Reference Steifetten and Dale2006). Declines and local population fluctuations are also driven by males undertaking relatively long-distance breeding dispersal in search of females (Dale et al., Reference Dale, Lunde and Steifetten2005; Dale & Christiansen, Reference Dale and Christiansen2010; Dale & Steifetten, Reference Dale and Steifetten2011). Loss of females from a population can only be mitigated by increasing the availability and suitability of habitat patches within breeding areas, which requires detailed knowledge of the species’ habitat and foraging requirements (Steifetten & Dale, Reference Steifetten and Dale2006).

Illegal captures during migration

The ability to constitute fat reserves rapidly before autumn migration seems to be an idiosyncrasy of the ortolan bunting, a characteristic known for centuries in gastronomic circles around Europe (Bastien, Reference Bastien1798; Kumerloeve, Reference Kumerloeve1954; Claverie, Reference Claverie1955). The fact that the ortolan bunting is the only species of bunting in Western Europe that undertakes long-distance migration may indicate specific adaptations for storing fat reserves. Historically, large numbers of ortolan buntings were trapped during the autumn and, to a lesser extent, spring migration, mostly in southern Europe (Claessens, Reference Claessens1992). Small traps known as matoles are used that are baited exclusively with nearly ripe oat stalks (Claverie, Reference Claverie1955). It is likely that the species has become a delicacy because of its propensity to lay down fat relatively quickly when fed grain (oat and millet) ad libitum in captivity (Claverie, Reference Claverie1955; Claessens, Reference Claessens1992; Dale, Reference Dale1997; Steifetten & Dale, Reference Steifetten and Dale2006). After fire a wild form of oat occurs en masse in some Mediterranean habitats (R. Arlettaz, unpubl. data) and may have constituted an important food source prior to the expansion of agriculture.

In some areas of south-west France, despite the species now being protected, trapping and fattening continues unabated, with an estimated 50,000 birds illegally captured per year until at least the early 1990s (Claessens, Reference Claessens1992). No studies have been conducted on the consequences of this regionally intensive poaching on the demography of temperate European populations. Although it is unlikely that birds from all declining European populations of the ortolan bunting cross these areas during migration, in a wide-scale metapopulation system these losses may affect overall population dynamics and thus also have regional consequences for distant populations.

Environmental changes in wintering areas

Although the migration phenology is well documented for Europe (Stolt, Reference Stolt1977; Cramp & Perrins, Reference Cramp and Perrins1994; Stolt & Fransson, Reference Stolt and Fransson1995; Yosef & Tryjanowski, Reference Yosef and Tryjanowski2002; Bairlein et al., 2009), the wintering areas of the ortolan bunting are poorly known. Habitat changes in wintering areas because of climate variation and/or anthropogenic impacts on land (e.g. pesticides, Vepsäläinen et al., Reference Vepsäläinen, Pakkala, Piha and Tiainen2005; Zwarts et al., Reference Zwarts, Bijlsma, van der Kamp and Wymenga2009) may also contribute to the observed population declines (Conrads, Reference Conrads1977; Kutzenberger, Reference Kutzenberger, Tucker and Heath1994; Busche, Reference Busche2005; Vepsäläinen et al., Reference Vepsäläinen, Pakkala, Piha and Tiainen2005; Lang, Reference Lang2007). However, the fact that some populations in the Mediterranean have been recently expanding (Brotons et al., Reference Brotons, Herrando and Pons2008) seems to indicate that the problem may lie primarily with the quality of the breeding grounds in Europe, possibly compounded by environmental changes in African wintering areas. Identification of the wintering areas of this species is imperative for understanding factors that may be affecting the species outside the breeding season and whether birds from temperate and Mediterranean populations winter in different areas.

Discussion

Knowledge gaps and recommendations for future research

Further information on the diet of the ortolan bunting across its range, particularly quantification of nestling diet in relation to prey availability in the main foraging habitats, is required for a full understanding of the species’ ecological requirements. In particular, quantification of the abundance and availability (the latter being abundance modified by accessibility) of major invertebrate groups in relation to the stages of vegetation succession following events such as fire may provide information on why the species colonizes these disturbed habitats during specific time windows (Pons & Clavero, Reference Pons and Clavero2010). Understanding the relationships between timing of breeding and prey phenology/availability would also elucidate the potential effects of weather and climate variation on reproductive output. Shifts in insect phenology could potentially lead to a mismatch between breeding season and prey availability, a phenomenon that may particularly affect long-distance migrants (Both et al., Reference Both, Van Turnhout, Bijlsma, Siepel, Van Strien and Foppen2010).

More data are required on survival and movement patterns in areas where populations are stable (Pons, Reference Pons, Estrada, Pedrocchi, Brotons and Herrando2004). As most detailed studies on population structure and dynamics have been conducted in northern Europe (particularly Norway: Dale, Reference Dale2001; Steifetten & Dale, Reference Steifetten and Dale2006; Dale & Steifetten, Reference Dale and Steifetten2011), a comparison between eastern European, Mediterranean and temperate populations would facilitate an understanding of the demographic factors limiting populations, such as the propensity for females to disperse away from certain areas. Investigation into the extent of continued poaching would elucidate the potential effects this may have on the demography of temperate European populations as a whole.

Climate variation has already affected the ecology and distribution of some bird species (Arlettaz et al., Reference Arlettaz, Schaad, Reichlin and Schaub2010; Both et al., Reference Both, Van Turnhout, Bijlsma, Siepel, Van Strien and Foppen2010). It is uncertain what effect predicted climate change scenarios would have on the ortolan bunting, especially given the paucity of data on future precipitation regimes (Easterling et al., Reference Easterling, Meehl, Parmesan, Changnon, Karl and Mearns2000) and the impact of weather on the species’ reproductive success. Studies at the edges of the species' range could provide insights into possible colonization of higher latitudes and altitudes. In Mediterranean Europe temperature increases may lead to abandonment of the warmest areas. Such studies are needed to disentangle the future effects of climate modification and ecosystem changes. Identification of the species’ African wintering grounds by use of new light-weight tracking techniques such as geolocators (Bächler et al., Reference Bächler, Hahn, Schaub, Arlettaz, Jenni and Fox2010) would facilitate the assessment of any potential environmental issues that may be contributing to the decline of the species outside its breeding areas and elucidate the connectivity of European breeding populations.

Conservation recommendations

Until we know more about the specific factors limiting ortolan bunting populations, we recommend application of evidence-based conservation measures (Pullin & Knight, 2001) to counteract vegetation encroachment and increase the proportion of patches of bare ground within vegetated patches close to ortolan bunting breeding areas. This could be achieved through extensive grazing, controlled fire (Wilson et al., Reference Wilson, Whittingham and Bradbury2005; Schaub et al., Reference Schaub, Martinez, Tagmann-Ioset, Weisshaupt, Maurer and Reichlin2010) and forestry interventions such as short-rotation coppicing (Berg, Reference Berg2002). However, attention should be paid to protecting sufficient dense grass sward to support prey populations. Patches of bare ground in cultivated fields close to breeding areas may also be produced by spring sowing, decreasing seed sowing density or increasing the distance between rows in sown fields. Although prescribed fire may be a cost-effective management option that is already used in several countries to counteract vegetation encroachment (Montané et al., Reference Montané, Casals, Taull, Lambert and Dale2009), further research is required to determine the potential detrimental effects of prescribed burning on other aspects of biodiversity. In southern Switzerland extensive grazing, forestry measures (coppicing), sowing of oat fields and controlled fire have recently been applied simultaneously to halt the decline of a rare butterfly species and the ortolan bunting (E. Revaz & R. Arlettaz, unpubl. data). Thus in certain habitats conservation measures targeting the ortolan bunting may have broader benefits for biodiversity.

Acknowledgements

We acknowledge O. Roth and C. Marti for assisting with sourcing literature. V. Braunisch, T. Reichlin and M. Berman assisted with translation of German and French literature. MHMM was supported by an Australian Postgraduate Award, and grants from the Holsworth Wildlife Research Endowment and the School of Plant Biology at the University of Western Australia. We also thank R.D. Phillips and two anonymous referees for their constructive comments.

Biographical sketches

Myles Menz has a broad interest in landscape ecology and conservation biology of birds, insects and plants, with particular interest in pollination ecology and the restoration of plant-pollinator mutualisms. Raphaël Arlettaz has wide interests in biodiversity conservation. His research is aimed at providing the necessary rigorous evidence-based guidance to maintain and restore ecosystems and their emblematic species, especially vertebrates and invertebrates in agro-ecosystems and Alpine ecosystems. He is also committed to bridging the great divide that exists between research and action in conservation biology, developing integrated research-implementation programmes, mostly within Switzerland.

Footnotes

*

Also at: Kings Park and Botanic Garden, The Botanic Gardens and Parks Authority, West Perth, Western Australia, Australia, The School of Plant Biology, The University of Western Australia, Crawley, Western Australia, Australia, and Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia

Also at: Swiss Ornithological Institute, Valais Field Station, Nature Centre, Salgesch, Switzerland

References

Arlettaz, R., Christe, P., Lugon, A., Perrin, N. & Vogel, P. (2001) Food availability dictates the timing of parturition in insectivorous mouse-eared bats. Oikos, 95, 105111.CrossRefGoogle Scholar
Arlettaz, R. & Fournier, J. (1993) Existe-t-il une ségrégation sexuelle de la prédation chez le Hibou petit-duc Otus scops? Alauda, 61, 257263.Google Scholar
Arlettaz, R., Perrin, N. & Hausser, J. (1997) Trophic resource partitioning and competition between the two sibling bat species Myotis myotis and Myotis blythii. Journal of Animal Ecology, 66, 897911.CrossRefGoogle Scholar
Arlettaz, R., Schaad, M., Reichlin, T. & Schaub, M. (2010) Impact of weather and climate variation on hoopoe reproductive ecology and population growth. Journal of Ornithology, 151, 889899.CrossRefGoogle Scholar
Bächler, E., Hahn, S., Schaub, M., Arlettaz, R., Jenni, L., Fox, J.W. et al. . (2010) Year-round tracking of small trans-Saharan migrants using light-level geolocators. PloS ONE, 5, e9566.CrossRefGoogle ScholarPubMed
Bairlein, F., Fiedler, W., Salewski, V. & Walther, B.A. (2009) Migration and non-breeding distribution of European ortolan buntings Emberiza hortulana—an overview. In Ökologie und Schutz des Ortolans (Emberiza hortulana) in Europa—IV Internationales Ortolan Symposium (ed. Bernardy, P.), pp. 8897. Naturschutz und Landschafts pflege in Niedersachsen, Germany.Google Scholar
Bastien, J.-F. (1798) La nouvelle maison rustique, ou économie rurale, pratique et générale. Paris, France.Google Scholar
Berg, Å. (2002) Breeding birds in short-rotation coppices on farmland in central Sweden—the importance of Salix height and adjacent habitats. Agriculture, Ecosystems and Environment, 90, 265276.CrossRefGoogle Scholar
Berg, Å. (2008) Habitat selection and reproductive success of ortolan buntings Emberiza hortulana on farmland in central Sweden—the importance of habitat heterogeneity. Ibis, 150, 565573.CrossRefGoogle Scholar
Berg, Å. & Pärt, T. (1994) Abundance of breeding farmland birds on arable and set-aside fields at forest edges. Ecography, 17, 147152.Google Scholar
BirdLife International (2004) Birds in Europe: Population Estimates, Trends and Conservation Status. BirdLife Conservation Series No. 12. BirdLife International, Wageningen, The Netherlands.Google Scholar
Blondel, J., Dervieux, A., Maistre, M. & Perret, P. (1991) Feeding ecology and life history variation of the blue tit in Mediterranean deciduous and sclerophyllous habitats. Oecologia, 88, 914.Google Scholar
Boitier, E. (2001) Densité du Bruant ortolan Emberiza hortulana sur un plateau céréalier Auvergnat. Alauda, 69, 325327.Google Scholar
Both, C., Van Turnhout, C.A.M., Bijlsma, R.G., Siepel, H., Van Strien, A.J. & Foppen, R.P.B. (2010) Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proceedings of the Royal Society of London, Series B: Biological Sciences, 277, 12591266.Google ScholarPubMed
Brambilla, M., Guidali, F. & Negri, I. (2008) The importance of an agricultural mosaic for cirl buntings Emberiza cirlus in Italy. Ibis, 150, 628632.Google Scholar
Brambilla, M., Guidali, F. & Negri, I. (2009) Breeding-season habitat associations of the declining corn bunting Emberiza calandra—a potential indicator of the overall bunting richness. Ornis Fennica, 86, 4150.Google Scholar
Brotons, L., Herrando, S. & Pons, P. (2008) Wildfires and the expansion of threatened farmland birds: the ortolan bunting Emberiza hortulana in Mediterranean landscapes. Journal of Applied Ecology, 45, 10591066.Google Scholar
Brotons, L., Pons, P. & Herrando, S. (2005) Colonization of dynamic Mediterranean landscapes: where do birds come from after fire? Journal of Biogeography, 32, 789798.Google Scholar
Busche, G. (2005) Zum Zugvorkommen des ortolans Emberiza hortulana an der Deutschen Bucht (Helgoland und schleswig-holsteinische Küste) 1964-2000. Die Vogelwarte, 43, 179184.Google Scholar
Claessens, O. (1992) La situation du Bruant ortolan Emberiza hortulana en France et en Europe. Alauda, 60, 6576.Google Scholar
Claverie, P.-A. (1955) L’Ortolan des Landes. Revue Forestière Française, 7, 547558.CrossRefGoogle Scholar
Conrads, K. (1968) Zur Ökologie des Ortolans (Emberiza hortulana) am Rande der Westfälichen Bucht. Die Vogelwelt, 2(Suppl.), 721.Google Scholar
Conrads, K. (1969) Beobachtungen am Ortolan (Emberiza hortulana L.) in der Brutzeit. Journal für Ornithologie, 110, 379420.CrossRefGoogle Scholar
Conrads, K. (1977) Ergebnisse einer mittelfristigen Bestandsaufnahme (1964-1976) des Ortolans (Emberiza hortulana) auf einer Probefläche der Senne (Ostmünsterland). Die Vogelwelt, 98, 81105.Google Scholar
Conrads, K. & Kipp, M. (1980) Ökologische und bioakustische Indizien für die Annahme einer Neuansiedlung nordskandinavischer Ortolane (Emberiza hortulana) in einem nordwestdeutschen Hochmoor. Die Vogelwelt, 101, 4147.Google Scholar
Cramp, S. & Perrins, C.M. (1994) The Birds of the Western Palaearctic. Vol. 9. Oxford University Press, Oxford, UK.Google Scholar
Dale, S. (1997) Hortulan—en direkte truet fugleart. Vår Fuglefauna, 20, 3338.Google Scholar
Dale, S. (2000) The importance of farmland for ortolan buntings nesting on raised peat bogs. Ornis Fennica, 77, 1725.Google Scholar
Dale, S. (2001) Female-biased dispersal, low female recruitment, unpaired males, and the extinction of small and isolated bird populations. Oikos, 92, 344356.Google Scholar
Dale, S. & Christiansen, P. (2010) Individual flexibility in habitat selection in the ortolan bunting Emberiza hortulana. Journal of Avian Biology, 41, 266272.Google Scholar
Dale, S. & Hagen, Ø. (1997) Population size, distribution and habitat selection of the ortolan bunting Emberiza hortulana in Norway. Fauna norvegica. Series C, Cinclus, 20, 93103.Google Scholar
Dale, S., Lunde, A. & Steifetten, Ø. (2005) Longer breeding dispersal than natal dispersal in the ortolan bunting. Behavioral Ecology, 16, 2024.CrossRefGoogle Scholar
Dale, S. & Manceau, N. (2003) Habitat selection of two locally sympatric species of Emberiza buntings (E. citrinella and E. hortulana). Journal für Ornithologie, 144, 5868.CrossRefGoogle Scholar
Dale, S. & Olsen, B.F.G. (2002) Use of farmland by ortolan buntings (Emberiza hortulana) nesting on a burned forest area. Journal für Ornithologie, 143, 133144.CrossRefGoogle Scholar
Dale, S. & Steifetten, Ø. (2011) The rise and fall of local populations of ortolan buntings: importance of movements of adult males. Journal of Avian Biology, 42, 114122.Google Scholar
Dale, S., Steifetten, Ø., Osiejuk, T.S., Losak, K. & Cygan, J.P. (2006) How do birds search for breeding areas at the landscape level? Interpatch movements of male ortolan buntings. Ecography, 29, 886898.Google Scholar
Deutsch, M. (2007) Der Ortolan Emberiza hortulana im Wendland (Niedersachsen) - Bestandszunahme durch Grünlandumbruch und Melioration? Die Vogelwelt, 128, 105115.Google Scholar
Diaz, M. (1990) Interspecific patterns of seed selection among granivorous passerines: effects of seed size, seed nutritive value and bird morphology. Ibis, 132, 467476.CrossRefGoogle Scholar
Donald, P.F. (2007) Adult sex ratios in wild bird populations. Ibis, 149, 671692.CrossRefGoogle Scholar
Easterling, D.R., Meehl, G.A., Parmesan, C., Changnon, S.A., Karl, T.R. & Mearns, L.O. (2000) Climate extremes: observations, modeling and impacts. Science, 289, 20682074.Google Scholar
Fonderflick, J. (2006) Analyse écologique et enjeux patrimoniaux de l’Avifaune nicheuse des grands causes de Lozère (France). Alauda, 74, 235250.Google Scholar
Fonderflick, J. & Thévenot, M. (2002) Effectifs et variations de densité du Bruant ortolan Emberiza hortulana sur le Causse Méjean (Lozère, France). Alauda, 70, 399412.Google Scholar
Fonderflick, J. Thévenot, M. & Guillaume, C.-P. (2005) Habitat of the ortolan bunting Emberiza hortulana on a Causse in Southern France. Vie et Milieu, 55, 109120.Google Scholar
Garling, M. (1943) Nochmals zur Zweitbrut des Ortolans. Beiträge zur Fortpflanzungsbiologie der Vögel mit Berücksichtigung der Oologie, 19, 165.Google Scholar
Glitz, D. (1967) Der Ortolan (Emberiza hortulana L.) im Hamburger Raum. Hamburger Avifaunistische Beiträge, 5, 4250.Google Scholar
Glutz von Blotzheim, U.N. (1989) De l’adaption des oiseaux aux cinditions naturelles et de ses limites devant les activités humaines. Nos Oiseaux, 40, 3339.Google Scholar
Glutz von Blotzheim, U.N. & Bauer, K.M. (1997) Emberiza hortulana Linnaeus 1758—Ortolan (Gartenammer). In Handbuch der Vögel Mitteleuropas (ed. Glutz von Blotzheim, U.N.), pp. 15651625. AULA-Verlag, Wiesbaden, Germany.Google Scholar
Gnielka, R. (1987) Der Bestand des Ortolans im Bezirk Halle. Apus, 6, 273279.Google Scholar
Goławski, A. & Dombrowski, A. (2002) Habitat use of yellowhammers Emberiza citrinella, ortolan buntings E. hortulana, and corn buntings Miliaria calandra in farmland of east-central Poland. Ornis Fennica, 79, 164172.Google Scholar
de Groot, M., Kmecl, P., Figelj, A., Figelj, J., Mihelič, T. & Rubinić, B. (2010) Multi-scale habitat association of the ortolan bunting Emberiza hortulana in a sub-Mediterranean area in Slovenia. Ardeola, 57, 5568.Google Scholar
Grützmann, J., Moritz, V., Südbeck, P. & Wendt, D. (2002) Ortolan (Emberiza hortulana) und Grauammer (Miliaria calandra) in Niedersachsen: Brutvorkommen, Lebensräume, Rückgang und Schutz. Vogelkundliche Berichte aus Niedersachsen, 34, 6990.Google Scholar
Hänel, K. (2004) Zur Populationsstruktur und Habitatpräferenz des Ortolans (Emberiza hortulana). Mitteilungen des Vereins Sächsischer Ornithologen, 9, 317357.Google Scholar
Helb, H.-W. (1974) Zur populationsdynamik und Ökologie des Ortolans (Aves: Emberiza hortulana). Verhandlungen der Gesellschaft für Ökologie, Erlangen, 4, 5558.Google Scholar
Ikemeyer, D. & von Bülow, B. (1995) Zum Rückgang der Ortolan-Population (Emberiza hortulana L. 1758) am Rande der Hohen Mark bei Haltern/Westfalen. Charadrius, 31, 137146.Google Scholar
Keusch, P. (1991) Vergleichende Studie zur Brutbiologie, Jungenentwicklung, Bruterfolg und Populationsökologie von Ortolan Emberiza hortulana und Zippammer E. cia im Alpenraum mit besonderer Berücksichtigung des unterschiedlichen Zugverhaltens. Dissertation, University of Bern, Switzerland.Google Scholar
Keusch, P. & Mosimann, P. (1984) Vergleichende ökologische Untersuchungen an Ortolan (Emberiza hortulana) und Zippammer (E. cia) in der Walliser Felsensteppe. Diplomarbeit, University of Bern, Switzerland.Google Scholar
Klvanova, A., Skorpilova, J., Vorisek, P., Gregory, R.D. & Burfield, I. (2010) Population Trends of European Common Birds 2010. PECBMS, Prague, Czech Republic.Google Scholar
Knoblauch, G. (1954) Ortolan-Beobachtungen im Tecklenberger Land. Natur und Heimat, 14, 2125.Google Scholar
Knoblauch, G. (1968) Die Ammern Westfalens einschließlich der für diesen Raum möglichen Irrgäste. Abhandlungen aus dem Landesmuseum für Naturkunde zu Münster in Westfalen, 30, 344.Google Scholar
Kölsch, E. (1959) Verbreitung und Ökologie des Ortolans (Emberiza hortulana) in der Vorderpfalz. Die Vogelwelt, 80, 7483.Google Scholar
Kumerloeve, H. (1954) Über früheren Ortolan-Fang in Niedersachsen und Westfalen. Beiträge zur Naturkunde Niedersachsens, 7, 112116.Google Scholar
Kunz, H. (1950) Der Ortolan Emberiza hortulana L. als Brutvogel bei Meiringen. Der Ornithologische Beobachter, 47, 14.Google Scholar
Kunze, W. (1954) Zur Brutbiologie des Gartenammers (Emberiza hortulana). Beiträge zur Vogelkunde, 3, 288290.Google Scholar
Kutzenberger, H. (1994) Ortolan bunting. In Birds in Europe: Their Conservation Status (eds Tucker, G.M. & Heath, M.F.), pp. 432433. BirdLife Conservation Series No. 3. BirdLife International, Cambridge, UK.Google Scholar
Lang, M. (2007) Niedergang der süddeutschen Ortolan-Population Emberiza hortulana—liegen die Ursachen außerhalb des Brutgebiets? Vogelwelt, 128, 179196.Google Scholar
Lang, M., Bandorf, H., Dornberger, W., Klein, H. & Mattern, U. (1990) Verbreitung, Bestandsentwicklung und Ökologie des Ortolans (Emberiza hortulana) in Franken. Ökologie der Vögel, 12, 97126.Google Scholar
Maes, P. (1989) De relictpopulatie van de Ortolaan Emberiza hortulana op het Kempens Plateau, Limburg 1985-1988. Oriolus, 55, 6672.Google Scholar
Maes, P., Gabriëls, J., Geuens, A. & Meeus, H. (1985) De Ortolaan Emberiza hortulana als broedvogel in Vlaanderen. Historisch voorkomen, huidige status, ecologische aspecten, bedreigingen en beschermingsinitiatieven. De Wielewaal, 51, 369385.Google Scholar
Meier-Peithmann, W. (1992) Der Ortolan (Emberiza hortulana) im Kreis Lüchlow-Dannenberg—Verbreitung, Siedlungsdichte, Habitat, Bestandsentwicklung. Lüchlow-Dannenberger Ornithologische Jahresberichte, 13, 5786.Google Scholar
Menz, M.H.M., Brotons, L. & Arlettaz, R. (2009a) Habitat selection by ortolan buntings Emberiza hortulana in post-fire succession in Catalonia: implications for the conservation of farmland populations. Ibis, 151, 752761.Google Scholar
Menz, M.H.M., Mosimann-Kampe, P. & Arlettaz, R. (2009b) Foraging habitat selection in the last ortolan bunting Emberiza hortulana population in Switzerland: final lessons before extinction. Ardea, 97, 323333.Google Scholar
Montané, F., Casals, P., Taull, M., Lambert, B. & Dale, M.R.T. (2009) Spatial patterns of shrub cover after different fire disturbances in the Pyrenees. Annals of Forest Science, 66, 612619.CrossRefGoogle Scholar
Naef-Daenzer, B. (2000) Patch time allocation and patch sampling by foraging great and blue tits. Animal Behaviour, 59, 989999.Google Scholar
Nævra, A. (2002) Hortulanens skjebnetime. Vår Fuglefauna, 25, 6281.Google Scholar
Newton, I. (2004) The recent declines of farmland bird populations in Britain: an appraisal of causal factors and conservation actions. Ibis, 146, 579600.Google Scholar
Ottvall, R., Green, M., Lindström, A., Svensson, S., Esseen, P.A. & Marklund, L. (2008) Distribution and habitat choice of the ortolan bunting Emberiza hortulana in Sweden. Ornis Svecica, 18, 316.CrossRefGoogle Scholar
OWL (2010) Ornithological Worldwide Literature Database. Http://www.birdlit.org/owl/ [accessed 10 June 2010].Google Scholar
Pons, P. (2004) Hortolà Emberiza hortulana. In Atles dels ocells nidificants de Catalunya 1999-2002 (Catalan Breeding Bird Atlas 1999-2002) (eds Estrada, J., Pedrocchi, V., Brotons, L. & Herrando, S.), pp. 544545. Institut Català d’Ornitologia and Lynx Edicions, Barcelona, Spain.Google Scholar
Pons, P. & Clavero, M. (2010) Bird responses to fire severity and time since fire in managed mountain rangelands. Animal Conservation, 13, 294305.Google Scholar
Pullin, A.S. & Knight, T.M. (2001) Effectiveness in conservation practice: pointers from medicine and public health. Conservation Biology, 15, 5054.Google Scholar
Revaz, E., Posse, B., Gerber, A., Sierro, A. & Arlettaz, R. (2005) Quel avenir pour le Bruant ortolan Emberiza hortulana en Suisse? Nos Oiseaux, 52, 6782.Google Scholar
Ruge, K., Pflüger, H.-J., Hölzinger, J., Labus, B., Gatter, W. & Schmidt, W. (1970) Ornithologischer Sammelbericht für Baden-Württemberg (4). Anzeiger der Ornithologischen Gesellschaft in Bayern, 9, 208225.Google Scholar
Sanderson, F.J., Donald, P.F., Pain, D.J., Burfield, I.J. & van Bommel, F.P.J. (2006) Long-term population declines in Afro-Palearctic migrant birds. Biological Conservation, 131, 93105.Google Scholar
Schaub, M., Martinez, N., Tagmann-Ioset, A., Weisshaupt, N., Maurer, M.L., Reichlin, T.S. et al. . (2010) Patches of bare ground as a staple commodity for declining ground-foraging insectivorous farmland birds. PloS ONE, 5, e13115.Google Scholar
Sirami, C., Brotons, L. & Martin, J.L. (2007) Vegetation and songbird response to land abandonment: from landscape to census plot. Diversity and Distributions, 13, 4252.Google Scholar
Sposimo, P. (1988) Communità ornitiche nidificanti sui Minti della Calvana (Firenze). Quaderni del Museo di Storia Naturale di Livorno, 9, 105129.Google Scholar
Steifetten, Ø. & Dale, S. (2006) Viability of an endangered population of ortolan buntings: the effect of a skewed operational sex ratio. Biological Conservation, 132, 8897.Google Scholar
Steiner, H.M. & Hüni-Luft, I. (1971) Verbreitung und Ökologie des Ortolans (Emberiza hortulana) in Weinviertel (Niederösterreich). Egretta, 2, 4452.Google Scholar
Stolt, B.-O. (1974) Gulsparvens Emberiza citrinella och ortolansparvens Emberiza hortulana förekomst vid Uppsala under 1960-talet. Vår Fågelvärld, 33, 210217.Google Scholar
Stolt, B.-O. (1977) On the migration of the ortolan bunting, Emberiza hortulana L.. Zoon, 5, 5161.Google Scholar
Stolt, B.-O. & Fransson, T. (1995) Body mass, wing length and spring arrival of the ortolan bunting Emberiza hortulana. Ornis Fennica, 72, 1418.Google Scholar
Ullrich, B. (1971) Untersuchungen zur Ethologie und Ökologie des Rotkopfwürgers (Lanius senator) in Südwestdeutschland im Vergleich zu Raubwürger (L. excubitor), Schwarzstirn-würger (L. minor) und Neuntöter (L. collurio). Die Vogelwarte, 26, 177.Google Scholar
van Dijk, A.-J., Hustings, F., Koffijberg, K., van der Weide, M., Deuzeman, S., Zoetebier, D. & Plate, C. (2005) Kolonievogels en zeldzame broedvogels in Nederland in 2000-02. Limosa, 78, 4564.Google Scholar
van Noorden, B. (1991) Een sprankje hoop voor de Ortolaan Emberiza hortulana? Limosa, 64, 6971.Google Scholar
van Noorden, B. (1999) De Ortolaan Emberiza hortulana, een plattelandsdrama. Limosa, 72, 5563.Google Scholar
van Noordwijk, A.J., McCleery, R.H. & Perrins, C.M. (1995) Selection for the timing of great tit breeding in relation to caterpillar growth and temperature. Journal of Animal Ecology, 64, 451458.CrossRefGoogle Scholar
Vepsäläinen, V., Pakkala, T., Piha, M. & Tiainen, J. (2005) Population crash of the ortolan bunting Emberiza hortulana in agricultural landscapes of southern Finland. Annales Zoologici Fennici, 42, 91107.Google Scholar
Vepsäläinen, V., Pakkala, T., Piha, M. & Tiainen, J. (2007) The importance of breeding groups for territory occupancy in a declining population of a farmland passerine bird. Annales Zoologici Fennici, 44, 819.Google Scholar
Vieuxtemps, D. & Jacob, J.-P. (2002) Des Bruants Ortolans (Emberiza hortulana) en période de nidification au Luxembourg belge en 2002. Aves, 39, 123138.Google Scholar
Wallgren, H. (1952) On the dependence of standard metabolism upon environmental temperature in the yellow bunting (Emberiza citrinella L.), and the ortolan bunting (E. hortulana L.). Ornis Fennica, 29, 4448.Google Scholar
Wallgren, H. (1954) Energy metabolism of two species of the genus Emberiza as correlated with distribution and migration. Acta Zoologica Fennica, 84, 1110.Google Scholar
Wilson, J.D., Whittingham, M.J. & Bradbury, R.B. (2005) The management of crop structure: a general approach to reversing the impacts of agricultural intensification on birds? Ibis, 147, 453463.Google Scholar
Yosef, R. & Tryjanowski, P. (2002) Differential spring migration of ortolan bunting Emberiza hortulana by sex and age at Eilat, Israel. Ornis Fennica, 79, 173180.Google Scholar
Zwarts, L., Bijlsma, R.G., van der Kamp, J. & Wymenga, E. (2009) Living on the Edge: Wetlands and Birds in a Changing Sahel. KNNV Publishing, Zeist, The Netherlands.Google Scholar