Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-18T06:22:54.673Z Has data issue: false hasContentIssue false

Analysis of Granular Acousmatic Music: Representation of sound flux and emergence

Published online by Cambridge University Press:  24 September 2019

Danilo Rossetti*
Affiliation:
NICS (Interdisciplinary Nucleus of Sound Communication), University of Campinas, Rua da Reitoria, 165, Cidade Universitária ‘Zeferino Vaz’, CEP 13083–872, Campinas-SP, Brazil.
Jônatas Manzolli*
Affiliation:
NICS (Interdisciplinary Nucleus of Sound Communication), University of Campinas, Rua da Reitoria, 165, Cidade Universitária ‘Zeferino Vaz’, CEP 13083–872, Campinas-SP, Brazil.

Abstract

Analysing electroacoustic music is a challenging task that can be approached by different strategies. In the last few decades, newly emerging computer environments have enabled analysts to examine the sound spectrum content in greater detail. This has resulted in new graphical representation of features extracted from audio recordings. In this article, we propose the use of representations from complex dynamical systems such as phase space graphics in musical analysis to reveal emergent timbre features in granular technique-based acousmatic music. It is known that granular techniques applied to musical composition generate considerable sound flux, regardless of the adopted procedures and available technological equipment. We investigate points of convergence between different aesthetics of the so-called Granular Paradigm in electroacoustic music, and consider compositions employing different methods and techniques. We analyse three works: Concret PH (1958) by Iannis Xenakis, Riverrun (1986) by Barry Truax, and Schall (1996) by Horacio Vaggione. In our analytical methodology, we apply such concepts as volume and emergence, as well as their graphical representation to the pieces. In conclusion we compare our results and discuss how they relate to the three composers’ specific procedures creating sound flux as well as to their compositional epistemologies and ontologies.

Type
Articles
Copyright
© Cambridge University Press, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ashby, W. 1956. An Introduction to Cybernetics. New York: John Wiley & Sons.CrossRefGoogle Scholar
Boon, J.-P., Noullez, A. and Mommen, C. 1990. Complex Dynamics and Musical Structure. Interface 19: 314.CrossRefGoogle Scholar
Couprie, P. 2017. Analyse et représentation du fantastique dans les musiques anecdotiques de Luc Ferrari. In Carayol, C., Castanet, P.-A., and Pistone, P. (eds.) Le fantastique dans les musiques des XXe et XXIe siècles. Paris: Delatour.Google Scholar
Couprie, P. 2018. EAnalysis: Developing a Sound-Based Music Analytical Tool. In Landy, L., and Emmerson, S. (eds.). Expanding the Horizon of Electroacoustic Music Analysis. Cambridge: University Press.Google Scholar
Delalande, F. 1997. Il faut être constamment un immigré: Entretiens avec Xenakis. Paris: Buchet/Chastel – INA/GRM.Google Scholar
Di Scipio, A. 1998. Compositional Models in Xenakis’s Electroacoustic Music. Perspectives of New Music 36(2): 201–43.CrossRefGoogle Scholar
Di Scipio, A. 2003. Sound is the Interface: From Interactive to Ecossystemic Signal Processing. Organised Sound 8(3): 269–77.CrossRefGoogle Scholar
Emmerson, S. and Landy, L. 2012. The Analysis of Electroacoustic Music, Different Needs of its Genres and Categories. Proceedings of the Electroacoustic Music Conference Meaning and Meaningfulness in Electroacoustic Music. Stockholm.Google Scholar
Forte, A. 1973. The Structure of Atonal Music. New Haven: Yale University Press.Google Scholar
Gabor, D. 1945. Theory of Communication. Journal of Institution of Electric Engineers 93(3): 429–57.Google Scholar
Kahn, C. 2004. The Art and Though of Heraclitus: An Edition of Fragments with Translation and Commentary. Cambridge: University Press.Google Scholar
Large, E. W. 2010. A Dynamical Systems Approach to Music Tonality. In Huys, R., and Jirsa, V. K. (eds.) Nonlinear Dynamics in Human Behavior. Studies in Computational Intelligence. Berlin: Springer.Google Scholar
Malt, M. 2012. Une proposition pour l’analyse des musiques électroacoustiques de Xenakis à partir de l’utilisation des descripteurs audio. In Solomos, M. (ed.) Iannis Xenakis, la musique électroacoustique. Paris: L’Harmattan.Google Scholar
Malt, M. 2015. La représentation dans le cadre de la composition et de la musicologie assistées par ordinateur: De la raison graphique à la contrainte cognitive (Mémoire d’Habilitation à Diriger des Recherches). Strasbourg: Université de Strasbourg.Google Scholar
Malt, M. and Jourdan, E. 2009. Le BStD – Une représentation graphique de la brillance et de l’écart type spectral, comme possible représentation de l’évolution du timbre sonore. Paper presented at the conference L’analyse musicale aujourd’hui, crise ou (r)évolution? University of Strasbourg, SFAM.Google Scholar
McAdams, S. 2013. Musical Timbre Perception. In Deutsch, D. (ed.), The Psychology of Music. San Diego: Academic Press.Google Scholar
McLaughlin, S. 2011. Dynamical Systems, Mimesis, and Analogy in Experimental Music. Chaotic Modeling and Simulation (CMSIM) 1: 127–37.Google Scholar
Manzolli, J. 2003. Non-linear Dynamics and Fractals as a Model for Sound Synthesis and Real time Composition. PhD thesis, University of Nottingham.Google Scholar
Paine, G. 2015 . Interaction as Material: The Techno-somatic dimension. Organised Sound 20(1): 82–9.CrossRefGoogle Scholar
Parncutt, R. 1989. Harmony: A Psychoacoustical Approach. Berlin: Springer.CrossRefGoogle Scholar
Peeters, G. 2004. A Large Set of Audio Features for Sound Description (Similarity and Classification) in the CUIDADO Project (Cuidado Project Report). Paris: Ircam. http://recherche.ircam.fr/anasyn/peeters/ARTICLES/Peeters_2003_cuidadoaudiofeatures.pdf (accessed 15 August 2018).Google Scholar
Prigogine, I. 1995. The End of Certainty: Time, Chaos and the Laws of Nature. New York: Free Press.Google Scholar
Roads, C. 2001. Microsound. Cambridge, MA: MIT Press.Google Scholar
Roads, C. 2005. The Art of Articulation: The Electroacoustic Music of Horacio Vaggione. Contemporary Music Review 24(4/5): 295309.CrossRefGoogle Scholar
Rossetti, D. 2017. The Qualities of the Perceived Sound Forms: A Morphological Approach to Timbre Composition. In Aramaki, M., et al. (eds.) Bridging People and Sounds: 12th International Symposium, CMMR 2016, São Paulo, Brazil, July 5–8, 2016, Revised Selected Papers. Cham: Springer.Google Scholar
Rossetti, D. and Ferraz, S. 2016. Forma musical como um processo: do isomorfismo ao heteromorfismo. Opus 22(1): 5996.CrossRefGoogle Scholar
Rossetti, D., Teixeira, W. and Manzolli, J. 2018. Emergent Timbre and Extended Techniques in Live-Electronic Music: An Analysis of Desdobramentos do Contínuo Performed by Audio Descriptors. Musica Hodie 18(1): 1630.CrossRefGoogle Scholar
Simondon, G. 2005. L’individuation à la lumière des notions de forme et d’information. Grenoble: Jérôme Million.Google Scholar
Smalley, D. 1997. Spectromorphology: Explaining Sound Shapes. Organised Sound 2(2): 107–26.CrossRefGoogle Scholar
Solomos, M. 2006. The Granular Connection (Xenakis, Vaggione, Di Scipio…). The Creative and Scientific Legacies of Iannis Xenakis International Symposium. Guelph, Canada.Google Scholar
Solomos, M. 2013. De la musique au son: l’émergence du son dans la musique des XXe-XXIe siècles. Rennes: Presses Universitaires de Rennes.Google Scholar
Tempelaars, S. 1996. Signal Processing, Speech and Music. Lisse: Sweets & Zeitlinger.Google Scholar
Truax, B. 1982. Timbral Construction in ‘Arras’ as a Stochastic Process. Computer Music Journal 6(3): 72–7.CrossRefGoogle Scholar
Truax, B. 1988. Real-time Granular Synthesis with a Digital Signal Processor. Computer Music Journal 12(2): 1426.CrossRefGoogle Scholar
Truax, B. 1990. Composing with Real-Time Granular Sound. Perspectives of New Music 28(2): 120–34.CrossRefGoogle Scholar
Truax, B. 1992. Musical Creativity and Complexity at the Threshold of the 21st Century. Interface 21: 2942.CrossRefGoogle Scholar
Truax, B. 2015. Paradigm Shifts and Electroacoustic Music: Some Personal Reflections. Organised Sound 20(1): 105–10.CrossRefGoogle Scholar
Vaggione, H. 2001. Some Ontological Remarks about Music Compositional Processes. Computer Music Journal 25(1): 5461.CrossRefGoogle Scholar
Vaggione, H. 2002. Décorrélation microtemporelle: morphologies et figurations spatiales. In Journées d’Informatique Musicale (9). Marseille: JIM.Google Scholar
Vaggione, H. 2008. Composition musicale: Représentations, granularités, émergences. In Sedes, A. (ed.) Musique et cognition, Intellectica 48–9: 155–74.Google Scholar
Vaggione, H. 2012. Représentations musicales numériques: Temporalités, objets, contextes. In Soulez, A., and Vaggione, H. (eds.) Manières de faire des sons. Paris: L’Harmattan.Google Scholar
Varela, F. 1994. Conhecer: As ciências cognitivas, tendências e perspectivas. Lisbon: Instituto Piaget.Google Scholar
Xenakis, I. 1992. Formalized Music: Thought and Mathematics in Composition. Stuyvesant, NY: Pendragon Press.Google Scholar
Xenakis, I. 1994a. La crise de la musique sérielle (1955). In Xenakis, I. Kéleütha: Écrits. Paris: L’Arche.Google Scholar
Xenakis, I. 1994b. Lettre à Hermann Scherchen (1956). In Xenakis, I. Kéleütha: Écrits. Paris: L’Arche.Google Scholar
Zattra, L. 2005. Analysis and Analyses of Electroacoustic Music. Sound and Computing Music Conference, SMC, Salerno, Italy.Google Scholar