Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T20:23:55.307Z Has data issue: false hasContentIssue false

A Uniformly Stable Nonconforming FEM Based on Weighted Interior Penalties for Darcy-Stokes-Brinkman Equations

Published online by Cambridge University Press:  20 February 2017

Peiqi Huang*
Affiliation:
Department of Applied Mathematics, Nanjing Forestry University, Nanjing 210037, China
Zhilin Li*
Affiliation:
Center for Research in Scientific Computation & Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
*
*Corresponding author. Email addresses:[email protected] (P. Q. Huang), [email protected] (Z. Li)
*Corresponding author. Email addresses:[email protected] (P. Q. Huang), [email protected] (Z. Li)
Get access

Abstract

A nonconforming rectangular finite element method is proposed to solve a fluid structure interaction problem characterized by the Darcy-Stokes-Brinkman Equation with discontinuous coefficients across the interface of different structures. A uniformly stable mixed finite element together with Nitsche-type matching conditions that automatically adapt to the coupling of different sub-problem combinations are utilized in the discrete algorithm. Compared with other finite element methods in the literature, the new method has some distinguished advantages and features. The Boland-Nicolaides trick is used in proving the inf-sup condition for the multidomain discrete problem. Optimal error estimates are derived for the coupled problem by analyzing the approximation errors and the consistency errors. Numerical examples are also provided to confirm the theoretical results.

Type
Research Article
Copyright
Copyright © Global-Science Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Arbogast, T. and Gomez, M., A discretization and multigrid solver for a Darcy-Stokes system of three dimensional vuggy porous media, Comput. Geosci., 13 (2009), 331348.Google Scholar
[2] Babuska, I. and Gatica, G. N., A residual-based a posteriori error estimator for the Stokes-Darcy coupled problem, SIAM J. Numer. Anal., 48 (2010), 498523.Google Scholar
[3] Beavers, G. S. and Joseph, D. D., Boundary conditions at a naturally permeable wall, J. Fluid Mech., 30 (1967), 197207.Google Scholar
[4] Ben Belgacem, F., The mixed mortar finite element method for the incompressible Stokes problem: convergence analysis, SIAM J. Numer. Anal., 37 (2000), 10851100.Google Scholar
[5] Bernardi, C., Rebollo, T. C., Hecht, F. and Mghazli, Z., Mortar finite element discretization of a model coupling Darcy and Stokes equations, Math. Model. Numer. Anal., 42 (2008), 375410.Google Scholar
[6] Boland, J. M. and Nicolaides, R. A., Stability of finite elements under divergence constraints, SIAM J. Numer. Anal., 20 (1983), 722731.Google Scholar
[7] Brenner, S. C., Poincaré-Friedrichs inequalities for piecewise H 1 functions, SIAM J. Numer. Anal., 41 (2003), 306324.CrossRefGoogle Scholar
[8] Brezzi, F. and Fortin, M., Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991.Google Scholar
[9] Burman, E. and Hansbo, P., A unified stabilized method for Stokes’ and Darcy's equations, J. Comput. Appl. Math., 198 (2007), 3551.Google Scholar
[10] Cai, M. C., Mu, M. and Xu, J. C., Preconditioning techniques for a mixed Stokes/Darcy model in porous media applications, J. Comput. Appl. Math., 233 (2009), 346355.Google Scholar
[11] Chen, W. B., Gunzburger, M., Hua, F. and Wang, X. M., A parallel Robin-Robin domain decomposition method for the Stokes-Darcy system, SIAM J. Numer. Anal., 49 (2011), 10641084.Google Scholar
[12] D’Angelo, C. and Zunino, P., A finite element method based on weighted interior penalties for heterogeneous incompressible flows, SIAM J. Numer. Anal., 47 (2009) 39904020.CrossRefGoogle Scholar
[13] Discacciati, M., Miglio, E. and Quarteroni, A., Mathematical and numerical models for coupling surface and groundwater flows, Appl. Numer. Math., 43 (2002), 5774.CrossRefGoogle Scholar
[14] Ern, A. and Guermond, J.-L., Theory and Practice of Finite Elements, Springer-Verlag, New York, 2004.Google Scholar
[15] Feng, M. F., Qi, R. S., Zhu, R. and Ju, B. T., Stabilized Crouzeix-Raviart element for the coupled Stokes and Darcy problem, Appl. Math. Mech. -Engl. Ed., 31 (2010), 393404.Google Scholar
[16] Galvis, J. and Sarkis, M., Non-matching mortar discretization analysis for the coupling Stokes-Darcy equations, Electron. Trans. Numer. Anal., 26 (2007), 350384.Google Scholar
[17] Gatica, G. N., Oyarzúa, R. and Sayas, F. J., Analysis of fully-mixed finite element methods for the Stokes-Darcy coupled problem, Math. Comp., 80 (2011), 19111948.Google Scholar
[18] Girault, V. and Raviart, P. A., Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms, Springer-Verlag, Berlin, New York, 1986.Google Scholar
[19] Huang, P. Q. and Chen, J. R., Two-level and multilevel methods for Stokes-Darcy problem discretized by nonconforming elements on nonmatching meshes (in Chinese), Sci. Sin. Math., 42 (2012), 389402.Google Scholar
[20] Huang, P. Q., Chen, J. R. and Cai, M. C., A mixed and nonconforming FEM with nonmatching meshes for a coupled Stokes-Darcy model, J. Sci. Comput., 53 (2012), 377394.Google Scholar
[21] Layton, W. J., Schieweck, F. and Yotov, I., Coupling fluid flow with porous media flow, SIAM J. Numer. Anal., 40 (2003), 21952218.Google Scholar
[22] Li, Z. L., An augmented Cartesian grid method for Stokes-Darcy fluid-structure interactions, Int. J. Numer. Meth. Engng., 10.1002/nme.5131 (2015).Google Scholar
[23] Mardal, K. A., Tai, X. C. and Winther, R., A robust finite element method for Darcy-Stokes flow, SIAM J. Numer. Anal., 40 (2002), 16051631.Google Scholar
[24] Mu, M. and Xu, J. C., A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow, SIAM J. Numer. Anal., 45 (2007), 18011813.Google Scholar
[25] Riviere, B. and Yotov, I., Locally conservative coupling of Stokes and Darcy flows, SIAM J. Numer. Anal., 42 (2005), 19591977.Google Scholar
[26] Rui, H. and Zhang, R., A unified stabilized mixed finite element method for coupling Stokes and Darcy flows, Comput. Methods Appl. Mech. Engrg., 198 (2009), 26922699.Google Scholar
[27] Saffman, P., On the boundary condition at the surface of a porous media, Stud. Appl. Math., 50 (1971), 93101.Google Scholar
[28] Shi, D. Y. and Ren, J. C., Nonconforming mixed finite element method for the stationary conduction-convection problem, Inter. J. Numer. Anal. Model., 6 (2009), 293310.Google Scholar
[29] Wang, L. H. and Qi, H., A locking-free scheme of nonconforming rectangular finite element for the planar elasticity, J. Comput. Math., 22 (2004), 641650.Google Scholar
[30] Xie, X. P., Xu, J. C. and Xue, G. R., Uniformly-stable finite element methods for Darcy-Stokes-Brinkman models, J. Comput. Math., 26 (2008), 437455.Google Scholar
[31] Xu, X. J. and Zhang, S. Y., A new divergence-free interpolation operator with applications to the Darcy-Stokes-Brinkman equations, SIAM J. Sci. Comput., 32 (2010), 855874.CrossRefGoogle Scholar
[32] Zhang, S. Q., Xie, X. P. and Chen, Y. M., Low order nonconforming rectangular finite element methods for Darcy-Stokes problems, J. Comput. Math., 27 (2009), 400424.Google Scholar