No CrossRef data available.
Article contents
Superconvergence and Asymptotic Expansions for Bilinear Finite Volume Element Approximations
Published online by Cambridge University Press: 28 May 2015
Abstract
Aiming at the isoparametric bilinear finite volume element scheme, we initially derive an asymptotic expansion and a high accuracy combination formula of the derivatives in the sense of pointwise by employing the energy-embedded method on uniform grids. Furthermore, we prove that the approximate derivatives are convergent of order two. Finally, numerical examples verify the theoretical results.
Keywords
- Type
- Research Article
- Information
- Numerical Mathematics: Theory, Methods and Applications , Volume 6 , Issue 2 , May 2013 , pp. 408 - 423
- Copyright
- Copyright © Global Science Press Limited 2013
References
[1]Li, R. H. and Zhu, P. Q., Generalized difference methods for second order elliptic partial differential equations quadrilateral grids II, Numer. Math. J. Chinese Univ., 4 (1982), pp. 360–375.Google Scholar
[2]Schmidt, T., Box schemes on quadrilateral meshes, Computing, 51 (1993), pp. 271–292.CrossRefGoogle Scholar
[3]Porsching, T. A., Error estimates for MAC-like approximations to the linear Navier-Stokes equations, Numer. Math., 29 (1987), pp. 291–364.CrossRefGoogle Scholar
[4]Chou, S. H., Analysis and convergence of a covolume element method for the generalized Stokes problem, Math. Comput., 66 (1997), pp. 85–104.CrossRefGoogle Scholar
[5]Rui, H. X., Symmetric modified finite volume element methods for self-adjoint elliptic and parabolic problems, J. Comput. Appl. Math., 146 (2002), pp. 373–386.CrossRefGoogle Scholar
[6]Ma, X., Shu, S. and Zhou, A., Symmetric finite volume discretization for parabolic problems, Comput. Meth. Appl. Mech. Eng., 192 (2003), pp. 4467–4485.CrossRefGoogle Scholar
[7]Cai, Z. Q., Douglas, J. and Park, M., Development and analysis of higher order finite volume methods over rectangles for elliptic equations, Adv. Comput. Math., 19 (2003), pp. 3–33.CrossRefGoogle Scholar
[8]Yang, M., Cubic finite volume methods for second order elliptic equations with variable coefi-cients, Northeastern Mathematical Journality, 21 (2005), pp. 146–152.Google Scholar
[9]Chen, L., A new class of high order finite volume methods for second order elliptic equations, SIAM. J. Numer. Anal., 47 (2010), pp. 4021–4043.CrossRefGoogle Scholar
[10]Wang, T. K., Alternating direction finite volume element methods for three-dimensional parabolic equations, Numer. Math. Theor. Meth. Appl., 3 (2010), pp. 499–522.CrossRefGoogle Scholar
[11]Abedini, A. A. and Ghiassi, R. A., Three-dimensional finite volume model for shallow water flow simulation, Ausrtalian J. Basic AN., 4 (2010), pp. 3208–3215.Google Scholar
[12]Chen, Z. Y., Li, R. H. and Zhou, A. H., A note on the optimal L2-estimate of the finite volume element method, Adv. Comput. Math., 16 (2002), pp. 291–303.CrossRefGoogle Scholar
[13]Lv, J. L. and Y Li, H., em L 2 error estimate of the finite volume element methods on quadrilateral meshes, Adv. Comput. Math., 33 (2010), pp. 129–148.CrossRefGoogle Scholar
[14]Li, Y. H. and Li, R. H., Generalized difference methods on arbitrary quadrilateral networks, J. Comput. Math., 6 (1999), pp. 653–672.Google Scholar
[15]Lv, J.L., L2 Error Estimates and Superconvergence of the Finite Volume Element Methods on Quadrilaterial Meshes (in Chinese), JiLin University Doctor thesis, 2009.Google Scholar
[16]Chen, C. M. and Huang, Y. Q., High Accuracy of Finite Element Method (in chinese), Hunan Science Press, China, 1995.Google Scholar
[17]Chen, C. M., Structure Theory of Superconvergence of Finite Elements (in chinese), Hunan Science Press, China, 2001.Google Scholar
[18]Huang, Y. Q., Qin, H. F. and Wang, D. S., Centroidal Voronoi Tessellation-based finite element superconvergence, Int. J. Numer. Methods Eng., 76 (2008), pp. 1819–1839.CrossRefGoogle Scholar
[19]Süli, E., Convergence of finite volume schemes for Poisson’s equation on nonuniform meshes, Int. J. Numer. Anal. Mod., 3 (2006), pp. 348–360.Google Scholar
[20]Shu, S., Yu, H. Y., Huang, Y. Q. and Nie, C. Y., A preserving-symmetry finite volume scheme and superconvergence on quadrangle grids, Int. J. Numer. Anal. Mod., 3 (2006), pp. 348–360.Google Scholar
[21]Nie, C. Y., Several Finite Volume Element Schemes and Some Applications in Radiation Heat Conduction Problems (in Chinese), Xiangtan University Doctor thesis, 2010.Google Scholar
[22]Zhang, L., On convergence of isoparametric bilinear finite elements, Commun. Numer. Meth. Eng., 12 (1996), pp. 849–862.3.0.CO;2-N>CrossRefGoogle Scholar