Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T19:52:52.188Z Has data issue: false hasContentIssue false

Convergence and Quasi-Optimality of an Adaptive Multi-Penalty Discontinuous Galerkin Method

Published online by Cambridge University Press:  15 February 2016

Zhenhua Zhou
Affiliation:
Department of Mathematics, Nanjing University, Jiangsu, 210093, P. R. China
Haijun Wu*
Affiliation:
Department of Mathematics, Nanjing University, Jiangsu, 210093, P. R. China
*
*Corresponding author. Email addresses: [email protected] (Z.-H. Zhou Zhou), [email protected] (H.-J. Wu)
Get access

Abstract

An adaptive multi-penalty discontinuous Galerkin method (AMPDG) for the diffusion problem is considered. Convergence and quasi-optimality of the AMPDG are proved. Compared with the analyses for the adaptive finite element method or the adaptive interior penalty discontinuous Galerkin method, extra works are done to overcome the difficulties caused by the additional penalty terms.

Type
Research Article
Copyright
Copyright © Global-Science Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Arnold, D.An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19 (1982), pp. 742760.CrossRefGoogle Scholar
[2]Babuška, I. and Vogelius, M., Feedback and adaptive finite element solution of one-dimensional boundary value problems, Numer. Math., 44 (1984), pp. 75102.CrossRefGoogle Scholar
[3]Bonito, A. and Nochetto, R. H., Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method, SIAM J. Numer. Anal., 48 (2010), pp. 734771.CrossRefGoogle Scholar
[4]Brenner, S.C. and Scott, L.R., The mathematical theory of finite element methods, Springer-Verlag, third ed., 2008.CrossRefGoogle Scholar
[5]Burman, E., A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty, SIAM J. Numer. Anal., 43 (2005), pp. 20122033.CrossRefGoogle Scholar
[6]Burman, E. and Ern, A., Stabilized Galerkin approximation of convection-diffusion-reaction equations: discrete maximum principle and convergence, Math. Comp., 74 (2005), pp. 16371652.CrossRefGoogle Scholar
[7]Burman, E. and Ern, A., Continuous interior penalty hp-finite element methods for advec-tion and advection-diffusion equations, Math. Comp., 259 (2007), pp. 11191140.CrossRefGoogle Scholar
[8]Burman, E., Fernandez, M.A., and Hansbo, P., Continuous interior penalty finite element method for Oseen's equations, SIAM J. Numer. Anal., 44 (2006), pp. 12481274.CrossRefGoogle Scholar
[9]Burman, E. and Hansbo, P., Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems, Comput. Meth. Appl. Mech. Engrg., 193 (2004), pp. 14371453.CrossRefGoogle Scholar
[10]Cascon, J. M., Kreuzer, C., Nochetto, R. H., and Siebert, K. G., Quasi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal., 46 (2008), pp. 25242550.CrossRefGoogle Scholar
[11]Ciarlet, P. G., The finite element method for elliptic problems, North-holland, 1978.Google Scholar
[12]Devore, R. A., Nonlinear approximation, Acta numerica, 7 (1998), pp. 51150.CrossRefGoogle Scholar
[13]Diening, L. and Kreuzer, C., Linear convergence of an adaptive finite element method for the p-Laplacian equation,SIAM J. Numer. Anal., 46 (2008), pp. 614638.CrossRefGoogle Scholar
[14]Dörfler, W., A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal., 33 (1996), pp. 11061124.CrossRefGoogle Scholar
[15]Hoppe, R. H. W., Kanschat, G., and Warburton, T., Convergence analysis of an adaptive interior penalty discontinuous Galerkin method, SIAM J. Numer. Anal., 47 (2008), pp. 534550.CrossRefGoogle Scholar
[16]Houston, P., Schötzau, D., and Wihler, T. P., Mixed hp-discontinuous Galerkin finite element methods for the Stokes problem in polygons, in Numerical mathematics and advanced applications, Springer, 2004, pp. 493501.CrossRefGoogle Scholar
[17]Hu, J., Shi, Z.-C., and Xu, J.-C., Convergence and optimality of the adaptiveMorley element method, Numer. Math., 121 (2012), pp. 731752.CrossRefGoogle Scholar
[18]Huang, J.-G. and Xu, Y.-F., Convergence and complexity of arbitrary order adaptive mixed element methods for the Poisson equation, Science China Mathematics, 55 (2012), pp.10831098.CrossRefGoogle Scholar
[19]Karakashian, O. A. and Pascal, F., Convergence of adaptive discontinuous Galerkin approximations of second-order elliptic problems, SIAM J. Numer. Anal., 45 (2007), pp. 641665.CrossRefGoogle Scholar
[20]Mekchay, K. and Nochetto, R. H., Convergence of adaptive finite element methods for general second order linear elliptic PDEs, SIAM J. Numer. Anal., 43 (2005), pp. 18031827.CrossRefGoogle Scholar
[21]Morin, P., Nochetto, R. H., and Siebert, K. G., Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal., 38 (2000), pp. 466488.CrossRefGoogle Scholar
[22]Morin, P., Nochetto, R. H., and Siebert, K. G., Convergence of adaptive finite element methods, SIAM review, 44 (2002), pp. 631658.CrossRefGoogle Scholar
[23]Morin, P., Siebert, K. G., and Veeser, A., A basic convergence result for conforming adaptive finite elements, Math. Model. Meth. Appl. Sci., 18 (2008), pp. 707737.CrossRefGoogle Scholar
[24]Stevenson, R., Optimality of a standard adaptive finite element method, Found. Comput. Math., 7 (2007), pp. 245269.CrossRefGoogle Scholar
[25]Wu, H. J., Pre-asymptotic error analysis of CIP-FEM and FEM for the Helmholtz equation with high wave number. part I: linear version, IMA J. Numer. Anal. 34 (2014), pp. 12661288.CrossRefGoogle Scholar
[26]Zhu, L. X. and Wu, H. J., Preasymptotic error analysis of CIP-FEM and FEM for Helmholtz equation with high wave number. part II: hp version, SIAM J. Numer. Anal., 51 (2013), pp.18281852.CrossRefGoogle Scholar