Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T20:38:50.362Z Has data issue: false hasContentIssue false

An Ulm-like Cayley Transform Method for Inverse Eigenvalue Problems with Multiple Eigenvalues

Published online by Cambridge University Press:  17 November 2016

Weiping Shen*
Affiliation:
Department of Mathematics, Zhejiang Normal University, Jinhua, 321004, China
Chong Li*
Affiliation:
School of Mathematical Sciences, Zhejiang University, Hangzhou, 310027, China
Xiaoqing Jin*
Affiliation:
Department of Mathematics, University of Macau, Macao, China
*
*Corresponding author. Email addresses:[email protected] (W.-P. Shen), [email protected] (C. Li), [email protected] (X.-Q. Jin)
*Corresponding author. Email addresses:[email protected] (W.-P. Shen), [email protected] (C. Li), [email protected] (X.-Q. Jin)
*Corresponding author. Email addresses:[email protected] (W.-P. Shen), [email protected] (C. Li), [email protected] (X.-Q. Jin)
Get access

Abstract

We study the convergence of an Ulm-like Cayley transform method for solving inverse eigenvalue problems which avoids solving approximate Jacobian equations. Under the nonsingularity assumption of the relative generalized Jacobian matrices at the solution, a convergence analysis covering both the distinct and multiple eigenvalues cases is provided and the quadratical convergence is proved. Moreover, numerical experiments are given in the last section to illustrate our results.

Type
Research Article
Copyright
Copyright © Global-Science Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bai, Z. J., Chan, R. H., and Morini, B., An inexact Cayley transform method for inverse eigenvalue problem, Inverse Problems, 20 (2004), pp. 16751689.Google Scholar
[2] Bai, Z. J., Jin, X. Q., A note on the Ulm-like method for inverse eigenvalue problems, Recent Advances in Scientific Computing and Matrix Analysis, International Press, 2011, pp. 17.Google Scholar
[3] Brussard, P. J. and Glaudemans, P. W., Shell Model Applications in Nuclear Spectroscopy, Elsevier, New York, 1977.Google Scholar
[4] Chan, R. H., Chung, H. L., and Xu, S. F., The inexact Newton-like method for inverse eigenvalue problem, BIT Numer. Math., 43 (2003), pp. 720.CrossRefGoogle Scholar
[5] Chan, R. H., Xu, S. F., and Zhou, H. M., On the convergence of a quasi-Newton method for inverse eigenvalue problem, SIAM J. Numer. Anal., 36 (1999), pp. 436441.Google Scholar
[6] Clark, F., Optimization and nonsmooth analysis, John Wiley, New York, 1983.Google Scholar
[7] Chu, M. T., Inverse eigenvalue problems, SIAM Rev., 40 (1998), pp. 139.CrossRefGoogle Scholar
[8] Chu, M. T. and Golub, G. H., Structured inverse eigenvalue problems, Acta Numer., 11 (2002), pp. 171.Google Scholar
[9] Elhay, S. and Ram, Y. M., An affine inverse eigenvalue problem, Inverse Problems, 18 (2002), pp. 455466.Google Scholar
[10] Ezquerro, J. A., Hernández, M. A., The Ulm method under mild differentiability conditions, Numer. Math., 109 (2008), pp.193207.Google Scholar
[11] Freund, R. W. and Nachtigal, N. M., QMR: a quasi-minimal residual method for non-Hermitian linear systems, Numer. Math., 60 (1991), pp. 315–39.Google Scholar
[12] Friedland, S., Nocedal, J., and Overton, M. L., The formulation and analysis of numerical methods for inverse eigenvalue problems, SIAM. J. Numer. Anal., 24 (1987), pp. 634667.CrossRefGoogle Scholar
[13] Galperin, A., Waksman, Z., Ulm's method under regular smoothness, Numer. Funct. Anal. Optim., 19 (1998), pp. 285307.Google Scholar
[14] Gladwell, G. M. L., Inverse problems in vibration, Appl. Mech. Rev., 39 (1986), pp. 10131018.Google Scholar
[15] Gladwell, G. M. L., Inverse problems in vibration II, Appl. Mech. Rev., 49 (1996), pp. 2534.Google Scholar
[16] Golub, G. H. and Van Loan, C. F., Matrix Computations, 3rd ed., The Johns Hopkins University Press, Baltimore, 1996.Google Scholar
[17] Gutiérrez, J. M., Hernández, M. A., Romero, N., A note on a modification of Moser's method, J. Complexity, 24 (2008), pp.185197.Google Scholar
[18] Hald, O., On discrete and numerical Sturm-Liouville problems, Ph.D. Thesis, Dept. Mathematics, New York University, New York, 1970.Google Scholar
[19] Joseph, K. T., Inverse eigenvalue problem in structural design, AIAA J., 30 (1992), pp. 28902896.Google Scholar
[20] Kublanovskaja, W. N., On an approach to the solution of the inverse eigenvalue problem, Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst., in V. A. Steklova Akad. Nauk SSSR, 1970, pp. 138149.Google Scholar
[21] Li, N., A matrix inverse eigenvalue problem and its application, Linear Algebra Appl., 266 (1997), pp. 143–52.CrossRefGoogle Scholar
[22] Müller, M., An inverse eigenvalue problem: computing B-stable Runge–Kutta methods having real poles, BIT, 32 (1992), pp. 676688.CrossRefGoogle Scholar
[23] Ortega, J. M. and Rheinboldt, W. C., Iterative solution of nonlinear equations in several variables, New York: Academic, 1970.Google Scholar
[24] Parker, R. L. and Whaler, K. A., Numerical methods for establishing solutions to the inverse problem of electromagnetic induction, J. Geophys. Res., 86 (1981), pp. 95749584.Google Scholar
[25] Potra, F., Qi, L., and Sun, D., Secant methods for semismooth equations, Numer. Math., 80 (1998), pp. 305–304.Google Scholar
[26] Peinado, J. and Vidal, A. M., A new parallel approach to the Toeplitz inverse eigenproblem using Newton-like methods, Lecture Notes in Computer Science, Springer, Berlin, 2001, pp. 355368.Google Scholar
[27] Ravi, M. S., Rosenthal, J., and Wang, X. A., On decentralized dynamic pole placement and feedback stabilization, IEEE Trans. Automat. Control, 40 (1995), pp. 16031614.Google Scholar
[28] Shen, W. P. and Li, C., An Ulm-like Cayley transform method for inverse eigenvalue problems, Taiwan. J. Math., 61 (2011), pp. 356367.Google Scholar
[29] Shen, W. P., Li, C., and Jin, X. Q., A Ulm-like method for inverse eigenvalue problems, Appl. Numer. Math., 61 (2011), pp. 356367.Google Scholar
[30] Shen, W. P., Li, C., and Jin, X. Q., An inexact Cayley transform method for inverse eigenvalue problems with multiple eigenvalues, Inverse Problems, 31 (2015), 085007.Google Scholar
[31] Sun, D. F. and Sun, J., Strong semismoothness of symmetric matrices and its application to inverse eigenvalue problems, SIAM J. Numer. Anal., 40 (2003), pp. 23522367.Google Scholar
[32] Sun, J. G. and Ye, Q., The unsolvability of inverse algebraic eigenvalue problems almost everywhere, J. Comp. Math. 4 (1986), pp. 212236.Google Scholar
[33] Trench, W. F., Numerical solution of the inverse eigenvalue problem for real symmetric Toeplitz matrices, SIAM J. Sci. Comput., 18 (1997), pp. 17221736.Google Scholar
[34] Ulm, S., On iterative methods with successive approximation of the inverse operator, Izv. Akad. Nauk. Est. SSR., 16 (1967), pp. 403411.Google Scholar
[35] Vong, S. W., Bai, Z. J., and Jin, X. Q., A Ulm-like method for inverse singular value problems, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 412429.CrossRefGoogle Scholar
[36] Xu, S. F., An Introduction to Inverse Algebric Eigenvalue Problems, Peking University Press, Beijing, 1998.Google Scholar