Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-24T00:55:54.588Z Has data issue: false hasContentIssue false

Runge-Kutta Discontinuous Local Evolution Galerkin Methods for the Shallow Water Equations on the Cubed-Sphere Grid

Published online by Cambridge University Press:  09 May 2017

Yangyu Kuang*
Affiliation:
School of Mathematical Sciences, Peking University, Beijing 100871, China
Kailiang Wu*
Affiliation:
Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA
Huazhong Tang*
Affiliation:
School of Mathematical Sciences, Peking University, Beijing 100871, China
*
*Corresponding author. Email addresses:[email protected] (Y. Y. Kuang), [email protected] (K. L. Wu), [email protected] (H. Z. Tang)
*Corresponding author. Email addresses:[email protected] (Y. Y. Kuang), [email protected] (K. L. Wu), [email protected] (H. Z. Tang)
*Corresponding author. Email addresses:[email protected] (Y. Y. Kuang), [email protected] (K. L. Wu), [email protected] (H. Z. Tang)
Get access

Abstract

The paper develops high order accurate Runge-Kutta discontinuous local evolution Galerkin (RKDLEG) methods on the cubed-sphere grid for the shallow water equations (SWEs). Instead of using the dimensional splitting method or solving one-dimensional Riemann problem in the direction normal to the cell interface, the RKDLEG methods are built on genuinely multi-dimensional approximate local evolution operator of the locally linearized SWEs on a sphere by considering all bicharacteristic directions. Several numerical experiments are conducted to demonstrate the accuracy and performance of our RKDLEG methods, in comparison to the Runge-Kutta discontinuous Galerkin method with Godunov's flux etc.

Type
Research Article
Copyright
Copyright © Global-Science Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Arun, K. R., Kraft, M., Lukáčová-Medvid’ová, M., and Prasad, P., Finite volume evolution Galerkin method for hyperbolic conservation laws with spatially varying flux functions, J. Comput. Phys., 228 (2009), pp. 565590.Google Scholar
[2] Bates, J. R., Semazzi, F. H. M., and Higgins, R. W., Integration of the shallow water equations on the sphere using a vector semi-Lagrangian scheme with a multigrid solver, Mon. Wea. Rev., 118 (1990), pp. 16151627.Google Scholar
[3] Block, B. J., Lukáčová-Medvid’ová, M., Virnau, P., and Yelash, L., Accelerated GPU simulation of compressible flow by the discontinuous evolution Galerkin method, Eur. Phys. J. Spec. Top., 210 (2012), pp. 119132.Google Scholar
[4] Bollermann, A., Noelle, S., and Lukáčová-Medvid’ová, M., Finite volume evolution Galerkin methods for the shallow water equations with dry beds, Commun. Comput. Phys., 10 (2011), pp. 371404.Google Scholar
[5] Butler, D. S., The numerical solution of hyperbolic systems of partial differential equations in three independent variables, Proc. R. Soc. Lond. A., 255 (1960), pp. 232252.Google Scholar
[6] Chen, C. G., Li, X. L., Shen, X. S., and Xiao, F., Global shallow water models based on multi-moment constrained finite volume method and three quasi-uniform spherical grids, J. Comput. Phys., 271 (2014), pp. 191223.Google Scholar
[7] Chen, C. G. and Xiao, F., Shallow water model on cubed-sphere by multi-moment finite volume method, J. Comput. Phys., 227 (2008), pp. 50195044.Google Scholar
[8] Cockburn, B. and Shu, C.-W., The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, J. Comput. Phys., 141 (1998), pp. 199224.Google Scholar
[9] Dudzinski, M. and Lukáčová-Medvid’ová, M., Well-balanced bicharacteristic-based scheme for multilayer shallow water flows including wet/dry fronts, J. Comput. Phys. 235 (2013), pp. 82113.Google Scholar
[10] Galewsky, J., Scott, R. K., and Polvani, L. M., An initial-value problem for testing numerical models of the global shallow-water equations, Tellus A, 56 (2004), pp. 429440.Google Scholar
[11] Giraldo, F. X., Hesthaven, J. S., and Wartburton, T., Nodal high-order discontinuous Galerkin methods for the shallow water equations, J. Comput. Phys., 181 (2002), pp. 499525.Google Scholar
[12] Giraldo, F. X. and Warburton, T., A nodal triangle-based spectral element method for the shallow water equations on the sphere, J. Comput. Phys., 207 (2005), pp. 129150.Google Scholar
[13] Giraldo, F. X. and Warburton, T., A high-order triangular discontinuous Galerkin oceanic shallow water model, Int. J. Numer. Meth. Fluids, 56 (2008), pp. 899925.Google Scholar
[14] Huang, L. C., Conservative bicharacteristic upwind schemes for hyperbolic conservation laws II, Comput. Math. Appl., 29 (1995), pp. 91107.Google Scholar
[15] Hundertmark-Zauškova, A., Lukáčová-Medvid’ová, M., and Prill, F., Large time step finite volume evolution Galerkin methods, J. Sci. Comput. 48 (2011), pp. 227240.Google Scholar
[16] Jakob-Chien, R., Hack, J. J., and Williamson, D. L., Spectral transform solutions to the shallow water test set, J. Comput. Phys., 119 (1995), pp. 164187.Google Scholar
[17] Johnston, R. L. and Pal, S. K., The numerical solution of hyperbolic systems using bicharacteristics, Math. Comput., 26 (1972), pp. 377392.Google Scholar
[18] Kageyama, A. and Sato, T., The Yin-Yang grid: An overset grid in spherical geometry, Geochem. Geophys. Geosyst., 5 (2004), pp. Q09005.Google Scholar
[19] Läuter, M., Giraldo, F.X., Handorf, D., and Dethloff, K., A discontinuous Galerkin method for the shallow water equations in spherical triangular coordinates, J. Comput. Phys., 227 (2008), pp. 1022610242.Google Scholar
[20] Läuter, M., Handorf, D., and Dethloff, K., Unsteady analytical solutions of the spherical shallow water equations, J. Comput. Phys., 210 (2005), pp. 535553.Google Scholar
[21] Lee, J. L. and Macdonald, A. E., A finite-volume icosahedral shallow-water model on a local coordinates, Mon. Wea. Rev., 137 (2009), pp. 14221437.Google Scholar
[22] Li, X. L., Chen, D. H., Peng, X. D., Takahashi, K., and Xiao, F., A multimoment finite volume shallow-water model on the Yin-Yang overset spherical grid, Mon. Wea. Rev., 136 (2008), pp. 30663086.Google Scholar
[23] Li, X. L., Shen, X. S., Peng, X. D., Xiao, F., Zhuang, Z. R., and Chen, C. G., Fourth order transport model on Yin-Yang grid by multi-moment constrained finite volume scheme, Proc. Comput. Sci., 9 (2012), pp. 10041013.Google Scholar
[24] Lin, S. J. and Rood, R. B., An explicit flux-form semi-Lagrangian shallow-water model on th sphere, Quart. J. Roy. Meteor. Soc., 123 (1997), pp. 24772498.Google Scholar
[25] Lukáčová-Medvid’ová, M. and Morton, K.W., Finite volume evolution Galerkin methods–A survey, Indian J. Pure Appl. Math., 41 (2010), pp. 329361.Google Scholar
[26] Lukáčová-Medvid’ová, M., Morton, K.W., and Warnecke, G., Finite volume evolution Galerkin methods for Euler equations of gas dynamics, Int. J. Numer. Meth. Fluids, 40 (2002), pp. 425434.Google Scholar
[27] Lukáčová-Medvid’ová, M., Morton, K.W., and Warnecke, G., Evolution Galerkin methods for hyperbolic systems in two space dimensions, Math. Comput., 69 (2000), pp. 13551384.Google Scholar
[28] Lukáčová-Medvid’ová, M., Morton, K. W., and Warnecke, G., Finite volume evolution Galerkin (FVEG) methods for hyperbolic problems, SIAM. J. Sci. Comput., 26 (2004), pp. 130.Google Scholar
[29] Lukáčová-Medvid’ová, M., Noelle, S., and Kraft, M., Well-balanced finite volume evolution Galerkin methods for the shallow water problems, J. Comput. Phys., 221 (2007), pp. 122147.Google Scholar
[30] Lukáčová-Medvid’ová, M., Saibertová, J., and Warnecke, G., Finite volume evolution Galerkin methods for nonlinear hyperbolic systems, J. Comput. Phys., 183 (2002), 533562.Google Scholar
[31] McDonald, A. and Bates, J. R., Semi-Lagrangian integration of a gridpoint shallow water model on the sphere, Mon. Wea. Rev., 117 (1989), pp. 130137.Google Scholar
[32] Morton, K. W., On the analysis of finite volume methods for evolutionary problems, SIAM J. Numer. Anal., 35 (1998), pp. 21952222.Google Scholar
[33] Nair, R. D. and Machenhauer, B., The mass-conservative cell-integrated semi-Lagrangian advection scheme on the sphere, Mon. Wea. Rev., 130 (2002), pp. 649667.Google Scholar
[34] Nair, R. D., Thomas, S. J., and Loft, R. D., A discontinuous Galerkin transport scheme on the cubed sphere, Mon. Wea. Rev., 133 (2005), pp. 814828.Google Scholar
[35] Nair, R. D., Thomas, S. J., and Loft, R. D., A discontinuous Galerkin global shallow water model, Mon. Wea. Rev., 133 (2005), pp. 876888.Google Scholar
[36] Pudykiewicz, J. A., On numerical solution of the shallow water equations with chemical reactions on icosahedral geodesic grid, J. Comput. Phys., 230 (2011), pp. 19561991.Google Scholar
[37] Putman, W. M. and Lin, S. J., Finite-volume transport on various cubed-sphere grid, J. Comput. Phys., 227 (2007), pp. 5578.Google Scholar
[38] Ronchi, C., Iacono, R., and Paolucci, P. S., The cubed sphere: A new method for the solution of partial differential equations in spherical geometry, J. Comput. Phys, 124 (1996), pp. 93114.Google Scholar
[39] Sadourny, R., Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids, Mon. Wea. Rev., 100 (1972), pp. 136144.Google Scholar
[40] Shao, S. H. and Tang, H. Z., Higher-order accurate Runge-Kutta discontinuous Galerkin methods for a nonlinear Dirac model, Dis. Cont. Dyn. Sys. B, 6(2006), pp. 623640.Google Scholar
[41] Shu, C.-W., Total-variation-diminishing time discretizations, SIAM J. Sci. Stat. Comput., 9 (1988), pp. 10731084.Google Scholar
[42] St-Cyr, A., Jablonowski, C., Dennis, J. M., Tufo, H. M., and Thomas, S. J., A comparison of two shallow-water models with non-conforming adaptive grids, Mon. Wea. Rev., 136 (2008), pp. 18981922.Google Scholar
[43] Sun, Y. T. and Ren, Y. X., The finite volume local evolution Galerkin method for solving the hyperbolic conservation laws, J. Comput. Phys., 228 (2009), pp. 49454960.Google Scholar
[44] Taylor, M., Tribbia, J., and Iskandarani, M., The spectral element method for the shallow water equations on the sphere, J. Comput. Phys., 130 (1997), pp. 92108.Google Scholar
[45] Thomas, S. J. and Loft, R. D., Semi-implicit spectral element model, J. Sci. Comput., 17 (2002), pp. 339350.Google Scholar
[46] Thomas, S. J. and Loft, R. D., The NCAR spectral element climate dynamical core: semi-implicit Eulerian formulation, J. Sci. Comput., 25 (2005), pp. 307322.Google Scholar
[47] Thuburn, J., A PV-based shallow-water model on a hexagonal-icosahedral grid, Mon. Wea. Rev., 125 (1997), pp. 23282347.Google Scholar
[48] Tomita, H., Tsugawa, M., Satoh, M., and Goto, K., Shallow-water model on a modified icosahedral geodesic grid by using spring dynamics, J. Comput. Phys., 174 (2001), pp. 579613.Google Scholar
[49] Ullrich, P. A., Jablonowski, C., and Van Leer, B., High-order finite-volume methods for the shallow water equations on the sphere, J. Comput. Phys., 229 (2010), pp. 61046134.CrossRefGoogle Scholar
[50] Williamson, D. L., Drake, J. B. Hack, J. J., Jakob, R., and Swarztrauber, P. N., A standard test set for numerical approximations to the shallow water equations in spherical geometry, J. Comput. Phys., 102 (1992), pp. 211224.Google Scholar
[51] Wu, K. L. and Tang, H. Z., Finite volume local evolution Galerkin method for two-dimensional special relativistic hydrodynamics, J. Comput. Phys., 256 (2014), pp. 277307.Google Scholar
[52] Yang, C., Cao, J. W., and Cai, X. C., A fully implicit domain decomposition algorithm for shallow water equations on the cubed-sphere, SIAM J. Sci. Comput., 32 (2010), pp. 418438.Google Scholar
[53] Yelash, L., Müller, A., Lukáčová-Medvid’ová, M., Giraldo, F. X., and Wirth, S. V., Adaptive discontinuous evolution Galerkin method for dry atmospheric flow, J. Comput. Phys., 268 (2014), pp. 106133.Google Scholar
[54] Zhao, J. and Tang, H. Z., Runge-Kutta discontinuous Galerkin methods with WENO limiter for the special relativistic hydrodynamics, J. Comput. Phys., 242 (2013), pp. 138168.Google Scholar