Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T14:30:33.952Z Has data issue: false hasContentIssue false

A Projection Preconditioner for Solving the Implicit Immersed Boundary Equations

Published online by Cambridge University Press:  09 August 2018

Qinghai Zhang*
Affiliation:
Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA.
Robert D. Guy*
Affiliation:
Department of Mathematics, University of California Davis, Davis, CA 95616, USA.
Bobby Philip*
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
*
*Corresponding author.Email address:[email protected]
Get access

Abstract

This paper presents a method for solving the linear semi-implicit immersed boundary equations which avoids the severe time step restriction presented by explicit-time methods. The Lagrangian variables are eliminated via a Schur complement to form a purely Eulerian saddle point system, which is preconditioned by a projection operator and then solved by a Krylov subspace method. From the viewpoint of projection methods, we derive an ideal preconditioner for the saddle point problem and compare the efficiency of a number of simpler preconditioners that approximate this perfect one. For low Reynolds number and high stiffness, one particular projection preconditioner yields an efficiency improvement of the explicit IB method by a factor around thirty. Substantial speed-ups over explicit-time method are achieved for Reynolds number below 100. This speedup increases as the Eulerian grid size and/or the Reynolds number are further reduced.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bell, J. B., Colella, P., and Glaz, H. M.. A second-order projection method for the incompressible Navier-Stokes equations. J. Comput. Phys., 85:257283, 1989.CrossRefGoogle Scholar
[2] Benzi, M., Golub, G. H., and Liesen, J.. Numerical solution of saddle point problems. Acta Numerica, pages 1137, 2005. doi:10.1017/S0962492904000212.Google Scholar
[3] Ceniceros, H. D. and Fisher, J. E.. A fast, robust, and non-stiff immersed boundary method. J. Comput. Phys., 230:51335153, 2011. doi:10.1016/j.jcp.2011.03.037.Google Scholar
[4] Ceniceros, H. D., Fisher, J. E., and Roma, A. M.. Efficient solutions to robust, semi-implicit discretizations of the immersed boundary method. J. Comput. Phys., 228(19):71377158, 2009.Google Scholar
[5] Chen, K.-Y., Feng, K.-A., Kim, Y., and Lai, M.-C.. A note on pressure accuracy in immersed boundary method for Stokes flow. J. Comput. Phys., 230:43774383, 2011.Google Scholar
[6] Chorin, A. J.. Numerical solution of the Navier-Stokes equations. Math. Comput., 22(104):745762, 1968.Google Scholar
[7] Liu, W. E. and Liu, J.-G.. Gauge method for viscous incompressible flows. Comm. Math. Sci., 1(2):317, 2003.Google Scholar
[8] Elman, H. C., Silvester, D. J., and Wathen, A. J.. Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics. Oxford University Press, USA, New York, 2005. isbn: 978-0198528685.Google Scholar
[9] Griffith, B. E.. An accurate and efficient method for the incompressible Navier-Stokes equations using the projection method as a preconditioner. J. Comput. Phys., 228(20):75657595, 2009. doi:10.1016/j.jcp.2009.07.001.Google Scholar
[10] Guy, R. D. and Fogelson, A. L.. A wave propagation algorithm for viscoelastic fluids with spatially and temporally varying properties. Comput. Methods Appl. Mech. Engrg., 197:22502264, 2008. doi:10.1016/j.cma.2007.11.022.CrossRefGoogle Scholar
[11] Guy, R. D. and Philip, B.. A multigrid method for a model of the implicit immersed boundary equations. Commun. Comput. Phys., 12(2):378400, 2012.CrossRefGoogle Scholar
[12] Guy, R. D., Philip, B., and Griffith, B. E.. Geometric multigrid for an implicit-time immersed boundary method. Advances in Computational Mathematics, in press, 2014. doi:10.1007/s10444-014-9380-1.CrossRefGoogle Scholar
[13] Hou, T. Y. and Shi, Z.. An efficient semi-implicit immersed boundary method for the Navier-Stokes equations. J. Comput. Phys., 227:89688991, 2008.Google Scholar
[14] Kim, J. and Moin, P.. Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comput. Phys., 59(2):308323, 1985.CrossRefGoogle Scholar
[15] Mayo, A. A. and Peskin, C. S.. An implicit numerical method for fluid dynamics problems with immersed elastic boundaries. In Fluid dynamics in biology (Seattle, WA, 1991), volume 141 of Contemp. Math., pages 261277. Amer. Math. Soc., Providence, RI, 1993.Google Scholar
[16] Mori, Y. and Peskin, C. S.. Implicit second-order immersed boundary methods with boundary mass. Comput. Methods Appl. Mech. Engrg., 197(25-28):20492067, 2008.Google Scholar
[17] Newren, E. P., Fogelson, A. L., Guy, R. D., and Kirby, R. M.. Unconditionally stable discretizations of the immersed boundary equations. J. Comput. Phys., 222:702719, 2007. doi:10.1016/j.jcp.2006.08.004.CrossRefGoogle Scholar
[18] Newren, E. P., Fogelson, A. L., Guy, R. D., and Kirby, R. M.. A comparison of implicit solvers for the immersed boundary equations. Comput. Methods Appl. Mech. Engrg., 197:22902304, 2009. doi:10.1016/j.cma.2007.11.030.CrossRefGoogle Scholar
[19] Peskin, C. S.. Numerical analysis of blood flow in the heart. J. Comput. Phys., 25:220252, 1977.Google Scholar
[20] Peskin, C. S.. The immersed boundary method. Acta Numerica, pages 479517, 2002. doi:10.1017/S0962492902000077.CrossRefGoogle Scholar
[21] Peskin, C. S. and McQueen, D. M.. A three-dimensional computational method for blood flow in the heart: I. immersed elastic fibers in a viscous incompressible fluid. J. Comput. Phys., 81:372405, 1989.Google Scholar
[22] Stockie, J. M. and Wetton, B. R.. Analysis of stiffness in the immersed boundary method and implications for time-stepping schemes. J. Comput. Phys., 154(1):4164, 1999.Google Scholar
[23] Trottenberg, U., Oosterlee, C., and Schuller, A.. Multigrid. Academic Press, San Diego, CA, 2001. ISBN:0-12-701070-X.Google Scholar
[24] Tu, C. and Peskin, C. S.. Stability and instability in the computation of flows with moving immersed boundaries: A comparison of three methods. SIAM J. Sci. Stat. Comput., 13(6):13611376, 1992.CrossRefGoogle Scholar
[25] Zhang, Q.. A fourth-order approximate projection method for the incompressible Navier-Stokes equations on locally-refined periodic domains. Appl. Numer. Math., 77(C):1630, 2014.Google Scholar