Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-20T04:51:59.815Z Has data issue: false hasContentIssue false

Nonconforming Finite Element Methods for Wave Propagation in Metamaterials

Published online by Cambridge University Press:  20 February 2017

Changhui Yao*
Affiliation:
School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, 450001, P. R. China
Lixiu Wang*
Affiliation:
Beijing Computational Science Research Center, Beijing, 100193, P. R. China
*
*Corresponding author. Email addresses:[email protected] (C.-H. Yao), [email protected] (L.-X. Wang)
*Corresponding author. Email addresses:[email protected] (C.-H. Yao), [email protected] (L.-X. Wang)
Get access

Abstract

In this paper, nonconforming mixed finite element method is proposed to simulate the wave propagation in metamaterials. The error estimate of the semi-discrete scheme is given by convergence order O(h2), which is less than 40 percent of the computational costs comparing with the same effect by using Nédélec-Raviart element. A Crank-Nicolson full discrete scheme is also presented with O(τ2 + h2) by traditional discrete formula without using penalty method. Numerical examples of 2D TE, TM cases and a famous re-focusing phenomena are shown to verify our theories.

Type
Research Article
Copyright
Copyright © Global-Science Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Hesthaven, J. S., Warburton, T., Nodal Discontinious Galerkin Methods:Algorithm, Analysis and Applications, Springer-verlag, Berlin Heidelbert, 2008.CrossRefGoogle Scholar
[2] Li, J., Huang, Y., Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterilas, Springer-Verlag, Berlin Heidelbert, 2013.Google Scholar
[3] Monk, P., Finite Element Methods for Maxwell's Equations, Oxford University Press, New York, 2003.Google Scholar
[4] Monk, P., A mixed method for approximating Maxwell's equations, SIAM J. Numer. Anal., 28:6(1991), pp, 16101634.Google Scholar
[5] Monk, P., Analysis of a finite element method for Maxwell's equations, SIAM J. Numer. Anal., 29:3(1992), pp, 714729.Google Scholar
[6] Monk, P., A comparison of three mixed methods for the time-dependent Maxwell's equations, SIAM J. Sci. Statist. Comput., 13:5(1992), pp, 10971122.Google Scholar
[7] Duan, H. Y., Jia, F., Lin, P. and Roger Tan, C. E., The Local L2 Projected C0 Finite Element Method for Maxwell Problem, SIAM J. Numer. Anal., 47:2(2009), pp, 12741303.Google Scholar
[8] Jian, Bo-Nan, Wu, Jie and Povinelli, L. A., The origin of spurious solutions in computational electromagnetics, NASA. Technical Memorandum 106921, (1995), pp, 144.Google Scholar
[9] Li, J.C. and Chen, Y., Analysis of a time-domain finite element method for 3-D Maxwell's equations in dispersive media, Comput. Methods Appl. Mech. Engrg., 195:33-36, (2006), pp, 42204229.CrossRefGoogle Scholar
[10] Li, J., Hesthaven, J.S., Analysis and application of the nodal discontinuous Galerkin method for wave propagation in metamaterials, J. Comput. Phys., 258(2014), pp, 915930.Google Scholar
[11] Ziolkowski, R.W., Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs, Opt. Express 11.(2003), pp, 662681.Google Scholar
[12] Lin, Q. and Li, J.C., uperconvergence analysis for Maxwell's equations in dispersive media, Math. Comp., 77:262, (2008), pp, 757771.Google Scholar
[13] Li, J.C., Numerical convergence and physical fidelity analysis for Maxwell's equations in metamaterials, Comput. Methods Appl. Mech. Engrg., 198:37-40 (2009), pp. 31613172.Google Scholar
[14] Li, J.C. and Zhang, Z.M., Unified analysis of time domain mixed finite element methods for maxwell's equations in dispersive media, J. Sci. Comput., 28:5 (2010), pp. 693710.Google Scholar
[15] Li, J.C., Unified analysis of leap-frog methods for solving time-domain Maxwell's equations in dispersive media, J. Sci. Comput., 47:1 (2011), pp. 126.CrossRefGoogle Scholar
[16] Huang, Y.Q., Li, J.C. and Yang, W., Interior penalty DG methods for Maxwell's equations in dispersive media, J. Comput. Phys., 230:12 (2011), pp. 45594570.Google Scholar
[17] Li, J.C., Huang, Y., Lin, Y., Developing Finite Element Methods for Maxwell's Equations in a Cole-Cole Dispersive Medium, SIAM J. Sci. Comput., 33:6 (2011), pp. 31533174.Google Scholar
[18] Huang, Y., Li, J. and Yang, W., Modeling Backward wave propagation in meta- materials by the finite element time domain method, SIAM J. Sci. Comput., 35:1(2013), pp, 248B274.Google Scholar
[19] Qiao, Z., Yao, C.H. and Jia, S.J., Superconvergence and extrapolation analysis of a non-conforming mixed finite element approximation for time-harmonic Maxwell's equations, J. Sci. Comput., 46:1 (2011), pp 119.Google Scholar
[20] Qiao, Z., Numerical investigations of the dynamical behaviors and instabilities for the Gierer-Meinhardt system, Comm. Comput. Phys., 3 (2008), pp. 406426.Google Scholar
[21] Qiao, Z., Zhang, Z. and Tang, T., An adaptive time-stepping strategy for the molecular beam epitaxy models, SIAM J. Sci. Comput., 33 (2011), pp, 13951414.Google Scholar
[22] Shi, D. Y. and Yao, C. H., Nonconforming finite element approximation of time-dependeent Maxwell's equations in Debye medium, Numer. Methods PDEs., (2014). DOI:10.1002/num21843.Google Scholar
[23] Brenner, S. C., Li, F. and Sung, L.-Y., A local divergence-free interior penalty method for two-dimensional curl-curl problem, SIAM J. Numer. Anal., 46:3 (2008), pp. 11901211.Google Scholar
[24] Brenner, S. C., Cui, J. Li, F. and Sung, L.-Y., A nonconforming finite element method for a two-dimensional curl-curl and grad-div problem, Numer. Math., 109 (2008), pp. 509533.Google Scholar
[25] Brenner, S. C., Li, F. and Sung, L.-Y., A locally divergence-free nonconforming finite element method for the time-harmonic maxwell equations, Math. Comp., 76:258 (2007), pp. 573595.Google Scholar