Hostname: page-component-5f745c7db-xx4dx Total loading time: 0 Render date: 2025-01-06T13:08:51.288Z Has data issue: true hasContentIssue false

Suggestion for a Neural Network Model for Simulating Child Language Acquisition

Review products

TikkalaA.1998. Suggestion for a Neural Network Model for Simulating Child Language Acquisition. Nordic Journal of Linguistics21, 47–64.

Published online by Cambridge University Press:  14 October 2010

Anneli Tikkala
Affiliation:
University of Kuopio, Department of Computer Science and Applied Mathematics, P.O. Box 1627, 70211 Kuopio, Finland. Email: [email protected]
Get access

Extract

This paper explores the possibilities of modelling and simulating the early phases in child language acquisition using neural networks. A back-propagation model is proposed for language acquisition in a highly inflecting language, Finnish. Some preliminary tests for simulating the U-shaped behaviour of a child's language acquisition process have been performed.

Type
Review Article
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aleksander, I. & Morton, H. 1991. An Introduction to Neural Computing. London: Chapman & Hall.Google Scholar
Bechtel, W. & Abrahamsen, A. 1990. Connectionism and the Mind. An Introduction to Parallel Processing in Networks. Oxford: Basil Blackwell.Google Scholar
Bengio, Y. 1996. Neural Networks for Speech and Sequence Recognition. London: International Thompson Computer Press.Google Scholar
Freeman, J. A. & Skapura, D. M. 1992. Neural Networks: Algorithms, Applications, and Programming Techniques. Reading, MA: Addison-Wesley.Google Scholar
Gasser, M. & Lee, C.-D. 1990. Networks that Learn about Phonological Feature Persistence. Connection Science 2, 265278.CrossRefGoogle Scholar
Hassoun, M. H. 1995. Fundamentals of Artificial Neural Networks. Cambridge, MA: MIT Press.Google Scholar
Hecht-Nielsen, R. 1990. Neurocomputing. Reading, MA: Addison-Wesley.Google Scholar
Hertz, J., Krogh, A. & Palmer, R. G. 1991. Introduction to the Theory of Neural Computation. Redwood City, CA: Addison-Wesley.Google Scholar
Hinton, G. E. 1989. Connectionist Learning Procedures. Artificial Intelligence 40, 185234.CrossRefGoogle Scholar
Hinton, G. E. 1992. How Neural Networks Learn from Experience. Scientific American, September, 104–109.Google Scholar
Hinton, G. E., McClelland, J. L. & Rumelhart, D. E. 1986. Distributed Representations. In Rumelhart, D. E. & McClelland, J. L. (eds) 5 Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1: Foundations. Cambridge, MA: MIT Press, pp. 77109.Google Scholar
Karlsson, F. 1983. Suomen kielen äänne- ja muotorakenne [Finnish phonology and morphology]. Porvoo, Finland: WSOY.Google Scholar
Lachter, J. & Bever, T. G. 1988. The Relation between Linguistic Structure and Theories of Language Learning. Cognition 28, 195247.CrossRefGoogle ScholarPubMed
Laine, M., Tikkala, A. & Juhola, M. 1997. Modelling Anomia by the Discrete Two-stage Word Production Architecture. Journal of Neurolinguistics 10, 139149.Google Scholar
Levelt, W. J. M. 1989. Speaking: From Intention to Articulation. Cambridge, MA: MIT Press.Google Scholar
Lyytinen, P. 1987. Cognitive Skills and Finnish Language Inflection. Scandinavian Journal of Psychology 28, 304312.CrossRefGoogle Scholar
Lyytinen, P. 1988a. Suomen kielen taivutusmuotojen hallinta 2–9 -vuotiailla [The Mastery of Finnish Inflectional Forms in 2–9-year-olds]. Report 297. Department of Psychology, University of Jyväskylä, Finland.Google Scholar
Lyytinen, P. 1988b. Morfologiatesti: Taivutusmuotojen hallinnan mittausmenetelmä lapsille [The Morphological Test]. Report 298. Department of Psychology, University of Jyväskylä, Finland.Google Scholar
Marchman, V. & Plunkett, K. 1989. Token Frequency and Phonological Predictability in a Pattern Association Network: Implications for Child Language Acquisition. Proceedings of the 11th Annual Conference of the Cognitive Science Society. Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 179187.Google Scholar
Marcus, G. F. 1995. The Acquisition of the English Fast Tense in Children and Multilayered Connectionist Networks. Cognition 56, 271279.CrossRefGoogle Scholar
Niemi, J., Laine, M. & Tuominen, J. 1994. Cognitive Morphology in Finnish: Foundations of a New Model. Language and Cognitive Processes 9, 423446.CrossRefGoogle Scholar
Niemi, J. & Niemi, S. 1985. Suomenkielisen lapsen morfosyntaksin ja sanaston kehityksestä: Tapaustutkimus [Acquisition of Finnish morphosyntax and lexicon: a case study]. Virittäjä 89, 152172.Google Scholar
Niemi, J. & Niemi, S. 1987. Acquisition of Inflectional Marking: A Case Study of Finnish. Nordic Journal of Linguistics 10, 5989.CrossRefGoogle Scholar
Paunonen, H. 1976. Allomorfien dynamiikkaa [Allomorph Dynamics]. Virittäjä 1, 82107.Google Scholar
Pinker, S. 1990. Language Acquisition. In Osherson, D. N. & Lasnik, H. (eds), An Invitation to Cognitive Science: Language. Vol. 1. Cambridge, MA: MIT Press.Google Scholar
Pinker, S. 1991. Rules of Language. Science 253, 530535.CrossRefGoogle ScholarPubMed
Pinker, S. & Prince, A. 1988. On Language and Connectionism: Analysis of a Parallel Distributed Processing Model of Language Acquisition. Cognition 28, 73193.CrossRefGoogle ScholarPubMed
Plunkett, K. & Marchman, V. A. 1989. Pattern Association in a Back Propagation Network: Implications for Child Language Acquisition. Center for Research in Language. Technical report 8902. San Diego, CA: University of California Press.Google Scholar
Plunkett, K. & Marchman, V. A. 1991. U-shaped Learning and Frequency Effects in Multilayered Perception. Cognition 38, 43102.CrossRefGoogle Scholar
Plunkett, K. & Marchman, V. A. 1993. From Rote Learning to System Building: Acquiring Verb Morphology in Children and Connectionist Nets. Cognition 48, 2169.CrossRefGoogle ScholarPubMed
Rosenblatt, F. 1958. The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Psychological Review 65, 386408. Reprinted in Anderson, J. & Rosenfeld, E. (eds), Neurocomputing, Foundations and Research. Cambridge, MA: MIT Press, 1988.CrossRefGoogle ScholarPubMed
Rumelhart, D. E., Hinton, G. E. & Williams, R. J. 1986a. Learning Internal Representations by Error Propagation. In Rumelhart, D. E. & McClelland, J. L. (eds), Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1: Foundations, Cambridge, MA: MIT Press, pp. 318362.CrossRefGoogle Scholar
Rumelhart, D. E., Hinton, G. E. & Williams, R. J. 1986b. Learning Representations by Back-propagating Errors. Nature 323, 533536. Reprinted in Anderson, J. & Rosenfeld, E. (eds), Neurocomputing, Foundations and Research. Cambridge, MA: MIT Press, 1988.CrossRefGoogle Scholar
Rumelhart, D. E. & McClelland, J. L. 1986. On Learning the Past Tenses of English Verbs. In Rumelhart, D. E. & McClelland, J. L. (eds), Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 2: Psychological and Biological Models. Cambridge, MA: MIT Press, pp. 216271.Google Scholar
Sejnowski, T. & Rosenberg, C. 1986. NETtalk: A Parallel Network that Learns to Read Aloud. The Johns Hopkins University Electrical Engineering and Computer Science Technical Report JHU/EECS-86/01.Google Scholar
Servan-Schreiber, D., Cleeremans, A. & McClelland, J. L. 1988. Encoding sequential structure in simple recurrent networks. Technical Report CMU-CS-88183. Computer Science Department, Carnagie Mellon University, Pittsburgh, PA.Google Scholar
Skousen, R. 1975. Substantive Evidence in Phonology: The Evidence from Finnish and French. The Hague: Mouton.Google Scholar
Smolensky, P. 1990. Tensor Product Variable Binding and Representation of Symbolic Structures in Connectionist Systems. Artificial Intelligence 46, 159216.CrossRefGoogle Scholar
Thyme, A. 1993. A Connectionist Approach to Nominal Inflection: Paradigm Patterning and Analogy in Finnish. PhD dissertation, University of California, San Diego.CrossRefGoogle Scholar
Tikkala, A. 1995. MORPHO: A Connectionist Language Production Tool for Finnish Nouns. Report A/1995/1. Department of Computer Science and Applied Mathematics, University of Kuopio, Finland.Google Scholar
Tikkala, A. (submitted). A Connectionist Word Production Tool for Finnish Nouns with a Model for Vowel Harmony Restrictions. Computational Linguistics.Google Scholar
Tikkala, A., Eikmeyer, H.-J., Laine, M. & Niemi, J. 1996. FinnPro: A Tool for the Simulation of Connectionist Models of Language Production. In Alander, J., Honkela, T. & Jakobsson, M. (eds), STEP'96 — Genes, Nets and Symbols. Proceedings of the Finnish Artificial Intelligence Conference 1996. Vaasa: Finnish Artificial Intelligence Society.Google Scholar
Tikkala, A., Eikmeyer, H.-J., Niemi, J. & Laine, M. 1997. The Production of Finnish Nouns: A Psycholinguistically Motivated Connectionist Model. Connection Science 9, 295314.CrossRefGoogle Scholar
Tikkala, A. & Juhola, M. 1995. A Neural Network Simulation Method of Aphasic Errors: Properties and Behaviour. Neural Computing & Applications 3, 192201.CrossRefGoogle Scholar
Tikkala, A. & Juhola, M. 1996. A Neural Network Simulation of Aphasic Naming Errors: Network Dynamics and Control. Neurocomputing 13, 1129.CrossRefGoogle Scholar
Tikkala, A., Juhola, M. & Laine, M. 1994. Simulation of Aphasic Naming Errors: Properties and Result Analysis of the Method. In Carlsson, C., Järvi, T. & Reponen, T. (eds), Multiple Paradigms for Artificial Intelligence. Proceedings of Contributed Session Papers. Conference on Artificial Intelligence Research in Finland. Turku: Finnish Artificial Intelligence Society.Google Scholar
Toivainen, J. 1980. Inflexional Affixes Used by Finnish-speaking Children Aged 1–3 Years. Helsinki: Suomalaisen Kirjallisuuden Seura.Google Scholar
Touretzky, D. K. & Pomerleau, D. A. 1989. What's Hidden in the Hidden Layers. BYTE, August, 227–233.
Wickelgren, W. A. 1969. Context-sensitive Coding, Associative Memory, and Serial Order in (Speech) Behaviour. Psychological Review 76, 115.CrossRefGoogle Scholar