Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T20:14:52.423Z Has data issue: false hasContentIssue false

Root dynamics and global change: seeking an ecosystem perspective

Published online by Cambridge University Press:  01 July 2000

RICHARD J. NORBY
Affiliation:
Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6422, USA
ROBERT B. JACKSON
Affiliation:
Department of Botany and Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
Get access

Abstract

Changes in the production and turnover of roots in forests and grasslands in response to rising atmospheric CO2 concentrations, elevated temperatures, altered precipitation, or nitrogen deposition could be a key link between plant responses and longer-term changes in soil organic matter and ecosystem carbon balance. Here we summarize the experimental observations, ideas, and new hypotheses developed in this area in the rest of this volume. Three central questions are posed. Do elevated atmospheric CO2, nitrogen deposition, and climatic change alter the dynamics of root production and mortality? What are the consequences of root responses to plant physiological processes? What are the implications of root dynamics to soil microbial communities and the fate of carbon in soil? Ecosystem-level observations of root production and mortality in response to global change parameters are just starting to emerge. The challenge to root biologists is to overcome the profound methodological and analytical problems and assemble a more comprehensive data set with sufficient ancillary data that differences between ecosystems can be explained. The assemblage of information reported herein on global patterns of root turnover, basic root biology that controls responses to environmental variables, and new observations of root and associated microbial responses to atmospheric and climatic change helps to sharpen our questions and stimulate new research approaches. New hypotheses have been developed to explain why responses of root turnover might differ in contrasting systems, how carbon allocation to roots is controlled, and how species differences in root chemistry might explain the ultimate fate of carbon in soil. These hypotheses and the enthusiasm for pursuing them are based on the firm belief that a deeper understanding of root dynamics is critical to describing the integrated response of ecosystems to global change.

Type
Research review
Copyright
© Trustees of the New Phytologist 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)