Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T01:47:02.442Z Has data issue: false hasContentIssue false

Reproductive biomass in Holcus lanatus clones that differ in their phosphate uptake kinetics and mycorrhizal colonization

Published online by Cambridge University Press:  01 June 2000

WENDY WRIGHT
Affiliation:
Department of Biology, University of York, Heslington, York YO1 5YW, UK
ALASTAIR FITTER
Affiliation:
Department of Biology, University of York, Heslington, York YO1 5YW, UK
ANDREW MEHARG
Affiliation:
Department of Plant & Soil Science, Cruickshank Building, Aberdeen AB24 3UU, UK
Get access

Abstract

In normal populations of the common grass Holcus lanatus there is a polymorphism for arsenate resistance, manifested as suppressed phosphate uptake (SPU), and controlled by a major gene with dominant expression. A natural population of SPU plants had greater arbuscular-mycorrhizal colonization than wild type, nonSPU plants. It was hypothesized that, in order to survive alongside plants with a normal rate of phosphate (P) uptake, SPU plants would be more dependent on mycorrhizal associations. We performed an experiment using plants with SPU phenotypes from both arsenate mine spoils and uncontaminated soils, as well as plants with a nonSPU phenotype. They were grown with and without a mycorrhizal inoculum and added N, which altered plant P requirements. We showed that grasses with SPU phenotypes accumulated more shoot P than nonSPU plants, the opposite of the expected result. SPU plants also produced considerably more flower panicles, and had greater shoot and root biomass. The persistence of SPU phenotypes in normal populations is not necessarily related to mycorrhizal colonization as there were no differences in percentage AM colonization between the phenotypes. Being mycorrhizal reduced flower biomass production, as mycorrhizal SPU plants had lower shoot P concentrations and produced fewer flower panicles than non-mycorrhizal, nonSPU plants. We now hypothesize that the SPU phenotype is brought about by a genotype that results in increased accumulation of P in shoots, and that suppression of the rate of uptake is a consequence of this high shoot P concentration, operating by means of a homeostatic feedback mechanism. We also postulate that increased flower production is linked to a high shoot P concentration. SPU plants thus allocate more resources into seed production, leading to a higher frequency of SPU genes. Increased reproductive allocation reduces vegetative allocation and may affect competitive ability and hence survival, explaining the maintenance of the polymorphism. As mycorrhizal SPU plants behave more like nonSPU plants, AM colonization itself could play a major part in the maintenance of the SPU polymorphism.

Type
Research Article
Copyright
© Trustees of the New Phytologist 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)