Published online by Cambridge University Press: 01 February 1999
The time course of initiation and development of root nodules was investigated in the South American actinorhizal shrub Discaria trinervis (Rhamnaceae). A local strain of Frankia (BCU110501) which was isolated from D. trinervis nodules, was used as inoculum. Inoculated seedlings were periodically studied under the light microscope after clearing with aqueous NaClO. In parallel, semithin and ultrathin sections were analysed by light and electron microscopy. Infection by Frankia BCU110501 involved intercellular penetration among epidermal and cortical root cells. Nodule primordia were detected from 6 d after inoculation, while bacteria were progressing through intercellular spaces of the outer layers of cortical cells. Invasion of host cells by the symbiont occurred 7–9 d after inoculation, and hypertrophy of the primordium cells was associated with Frankia penetration. Root hairs were not deformed during the early events of nodule formation. From 13 to 16 d after inoculation, the proximal cellular zone of the primordia behaved differently from the other tissues after NaClO treatment and remained darkly pigmented. At the same time, differentiation of Frankia vesicles started to occur inside already infected cells. By 16 d after inoculation, spherical vesicles of BCU110501 were homogeneously distributed in the host cells. These vesicles were septate and surrounded by void space. Frankia spores or sporangia were not observed in the nodule tissue. This study has clarified the mode of Frankia penetration in D. trinervis, one of the Rhamnaceae which also includes Ceanothus. The events involved in infection, nodule induction, host-cell infection and vesicle differentiation have been characterized and identified as time-segregated developmental processes in the ontogeny of D. trinervis root nodules.