Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T08:05:58.509Z Has data issue: false hasContentIssue false

A simple differential geometry for complex networks

Published online by Cambridge University Press:  16 November 2020

Emil Saucan*
Affiliation:
Department of Applied Mathematics, ORT Braude College, Karmiel 2161002, Israel,
Areejit Samal
Affiliation:
The Institute of Mathematical Sciences (IMSc), Homi Bhabha National Institute (HBNI), Chennai 600113, India, Max Planck Institute for Mathematics in the Sciences, Leipzig 04103, Germany (email: [email protected])
Jürgen Jost
Affiliation:
Max Planck Institute for Mathematics in the Sciences, Leipzig 04103, Germany (email: [email protected]) The Santa Fe Institute, Santa Fe, New Mexico 87501, USA (email: [email protected])
*
*Corresponding author. Email: [email protected]

Abstract

We introduce new definitions of sectional, Ricci, and scalar curvatures for networks and their higher dimensional counterparts, derived from two classical notions of curvature for curves in general metric spaces, namely, the Menger curvature and the Haantjes curvature. These curvatures are applicable to unweighted or weighted and undirected or directed networks and are more intuitive and easier to compute than other network curvatures. In particular, the proposed curvatures based on the interpretation of Haantjes definition as geodesic curvature allow us to give a network analogue of the classical local Gauss–Bonnet theorem. Furthermore, we propose even simpler and more intuitive proxies for the Haantjes curvature that allow for even faster and easier computations in large-scale networks. In addition, we also investigate the embedding properties of the proposed Ricci curvatures. Lastly, we also investigate the behavior, both on model and real-world networks, of the curvatures introduced herein with more established notions of Ricci curvature and other widely used network measures.

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Action Editor: Hocine Cherifi

References

Albert, R., & Barabási, A. L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), 47.CrossRefGoogle Scholar
Asoodeh, S., Gao, T., & Evans, J. (2018). Curvature of hypergraphs via multi-marginal optimal transport. In 2018 IEEE Conference on Decision and Control (CDC) (pp. 11801185). IEEE.CrossRefGoogle Scholar
Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509512.CrossRefGoogle ScholarPubMed
Bianconi, G., & Rahmede, C. (2017). Emergent hyperbolic network geometry. Scientific Reports, 7, 41974.CrossRefGoogle ScholarPubMed
Blumenthal, L. M. (1953) Distance Geometry – Theory and Applications. Claredon Press.Google Scholar
Blumenthal, L. M. & Menger, K. (1970) Studies in geometry. Freeman and Co.Google Scholar
Boguná, M., Papadopoulos, F., & Krioukov, D. (2010). Sustaining the internet with hyperbolic mapping. Nature Communications, 1(1), 18.CrossRefGoogle ScholarPubMed
Boguná, M., Bonamassa, I., De Domenico, M., Havlin, S., Krioukov, D., & Serrano, M. (2020). Network geometry. arXiv preprint arXiv:2001.03241.Google Scholar
Burago, D., Burago, Y., & Ivanov, S. A. (2001). A course in metric geometry . Graduate Studies in Mathematics, vol. 33. Providence, RI: American Mathematical Society.Google Scholar
Cushing, D., & Kamtue, S. (2019). Long-scale Ollivier Ricci curvature of graphs. Analysis and Geometry in Metric Spaces, 7(1), 2244.CrossRefGoogle Scholar
Dodziuk, J., & Kendall, W. S. (1986). Combinatorial Laplacians and Isoperimetric inequality. In K. D. Elworthy (Ed.), From local times to global geometry, control and physics . Pitman Research Notes in Mathematics Series, vol. 150 (pp. 68–74). London, UK: Prentice Hall Press.Google Scholar
Dorogovtsev, S. N., & Mendes, J. F. F. (2013). Evolution of networks: From biological nets to the Internet and WWW. Oxford University Press.Google Scholar
Eckmann, J., & Moses, E. (2002). Curvature of co-links uncovers hidden thematic layers in the world wide web. Proceedings of the National Academy of Sciences USA, 99(9), 58255829.CrossRefGoogle Scholar
Epstein, D. B. A., Paterson, M. S., Cannon, J. W., Holt, D. F., Levy, S. V., & Thurston, W. P. (1992). Word Processing in Groups. USA: A. K. Peters Ltd.CrossRefGoogle Scholar
Erdös, P., & Rényi, A. (1961). On the evolution of random graphs. Bull. Inst. Internat. Statist., 38(4), 343347.Google Scholar
Farooq, H., Chen, Y., Georgiou, T. T., Tannenbaum, A., & Lenglet, C. (2019). Network curvature as a hallmark of brain structural connectivity. Nature Communications, 10(1), 111.CrossRefGoogle ScholarPubMed
Forman, R. (2003). Bochner’s method for cell complexes and combinatorial Ricci curvature. Discrete and Computational Geometry, 29(3), 323374.CrossRefGoogle Scholar
Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40, 3541.CrossRefGoogle Scholar
Girvan, M., & Newman, M.E.J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences USA, 99(12), 78217826.CrossRefGoogle Scholar
Gromov, M. (2007). Metric structures for Riemannian and non-Riemannian spaces. Birkhäuser Boston.Google Scholar
Gu, D. X., & Saucan, E. (2013). Metric Ricci curvature for PL manifolds. Geometry, 2013, 12. doi: 10.1155/2013/694169 CrossRefGoogle Scholar
Haantjes, J. (1947). Distance geometry. Curvature in abstract metric spaces. Proc. Kon. Ned. Akad. v. Wetenseh., Amsterdam, 50, 302314.Google Scholar
Horak, D., & Jost, J. (2013). Spectra of combinatorial Laplace operators on simplicial complexes. Advances in Mathematics, 244, 303336.CrossRefGoogle Scholar
Janson, S. (2015). Lecture notes on Euclidean, spherical and hyperbolic trigonometry.Google Scholar
Jeong, H., Mason, S. P., Barabási, A. L., & Oltvai, Z. N. (2001). Lethality and centrality in protein networks. Nature, 411(6833), 4142.CrossRefGoogle ScholarPubMed
Jost, J. (2017). Riemannian geometry and geometric analysis (7th ed.). Berlin: Springer International Publishing.CrossRefGoogle Scholar
Kay, D. C. (1980). Arc curvature in metric spaces. Geometriae Dedicata, 9(1), 91105.CrossRefGoogle Scholar
Keller, M. (2015). Intrinsic metrics on graphs: A survey. In Mugnolo, D. (ed.), Mathematical technology of networks (pp. 81119). Cham: Springer International Publishing.CrossRefGoogle Scholar
Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., & Boguná, M. (2010). Hyperbolic geometry of complex networks. Physical Review E, 82(3), 036106.CrossRefGoogle ScholarPubMed
Kunegis, J. (2013). Konect: the Koblenz network collection. In Proceedings of the 22nd international conference on world wide web companion (pp. 13431350). New York, NY, USA: ACM.Google Scholar
Leskovec, J., Kleinberg, J., & Faloutsos, C. (2007). Graph evolution: Densification and shrinking diameters. ACM Transactions on Knowledge Discovery from Data (TKDD), 1(1), 2.CrossRefGoogle Scholar
Menger, K. (1930). Untersuchungen über allgemeine Metrik. Vierte Untersuchung. Zur Metrik der Kurven. Mathematische Annalen, 103, 466501.CrossRefGoogle Scholar
Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., & Alon, U. (2002). Network motifs: simple building blocks of complex networks. Science, 298(5594), 824827.CrossRefGoogle ScholarPubMed
Newman, M. E. J. (2010). Networks: An introduction. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Ni, C., Lin, Y., Gao, J., Gu, X. D., & Saucan, E. (2015). Ricci curvature of the Internet topology. In 2015 IEEE conference on computer communications (INFOCOM) (pp. 27582766). Hong Kong: IEEE.Google Scholar
Ni, C., Lin, Y., Luo, F., & Gao, J. (2019). Community detection on networks with Ricci flow. Scientific Reports, 9(1), 1–12.llivier, Y. (2009). Ricci curvature of Markov chains on metric spaces. Journal of Functional Analysis, 256(3), 810864.Google Scholar
Pauc, C. (1936). Courbure dans les espaces métriques. Atti Acad. di Lincei, Serie 6, 24, 109115.Google Scholar
Perelman, G. (1991). Alexandrov’s spaces with curvature bounded from below II. preprint.Google Scholar
Plaut, C. (2002). Metric spaces of curvaturek. Handbook of geometric topology (pp. 819898). Elsevier, Amsterdam.Google Scholar
Salgado, H., Peralta-Gil, M., Gama-Castro, S., Santos-Zavaleta, A., Muniz-Rascado, L., Garcia-Sotelo, J. S., …Collado-Vides, J. (2013). RegulonDB v8.0: Omics data sets, evolutionary conservation, regulatory phrases, cross- validated gold standards and more. Nucleic Acids Research, 41(D1), D203D213.CrossRefGoogle ScholarPubMed
Samal, A., Sreejith, R. P., Gu, J., Liu, S., Saucan, E., & Jost, J. (2018). Comparative analysis of two discretizations of Ricci curvature for complex networks. Scientific Reports, 8, 8650.CrossRefGoogle ScholarPubMed
Sandhu, R., Georgiou, T., Reznik, E., Zhu, L., Kolesov, I., Senbabaoglu, Y., & Tannenbaum, A. (2015). Graph curvature for differentiating cancer networks. Scientific Reports, 5, 12323.CrossRefGoogle ScholarPubMed
Saucan, E. (2012a). Isometric embeddings in imaging and vision: Facts and fiction. Journal of Mathematical Imaging and Vision, 43(2), 143155.CrossRefGoogle Scholar
Saucan, E. (2012b). On a construction of Burago and Zalgaller. Asian Journal of Mathematics, 16(4), 587606.CrossRefGoogle Scholar
Saucan, E. (2016). Metric curvatures and their applications I. Geometry, Imaging and Computing, 2(4), 257334.CrossRefGoogle Scholar
Saucan, E., & Appleboim, E. (2005). Curvature based clustering for dna microarray data analysis. In Iberian conference on pattern recognition and image analysis (pp. 405412). Berlin, Heidelberg: Springer.Google Scholar
Saucan, E., & Weber, M. (2018). Forman’s Ricci curvature-from networks to hypernetworks. In International conference on complex networks and their applications (pp. 706717). Cham: Springer.Google Scholar
Saucan, E., Sreejith, R. P., Vivek-Ananth, R. P., Jost, J., & Samal, A. (2019a). Discrete Ricci curvatures for directed networks. Chaos, Solitons & Fractals, 118, 347360.CrossRefGoogle Scholar
Saucan, E., Samal, A., & Jost, J. (2019b). A simple differential geometry for networks and its generalizations. In International conference on complex networks and their applications (pp. 943954). Cham: Springer.CrossRefGoogle Scholar
Sia, J., Jonckheere, E., & Bogdan, P. (2019). Ollivier-Ricci curvature-based method to community detection in complex networks. Scientific Reports, 9(1), 112.CrossRefGoogle ScholarPubMed
Sreejith, R. P., Mohanraj, K., Jost, J., Saucan, E., & Samal, A. (2016). Forman curvature for complex networks. Journal of Statistical Mechanics: Theory and Experiment, 063206.Google Scholar
Stone, D. A. (1973). Sectional curvatures in piecewise linear manifolds. Bull. Amer. Math. Soc., 79, 10601063.CrossRefGoogle Scholar
Stone, D. A. (1976). A combinatorial analogue of a theorem of Myers. Illinois Journal of Mathematics, 20(1), 1221.Google Scholar
Šubelj, L., & Bajec, M. (2011). Robust network community detection using balanced propagation. The European Physical Journal B, 81(3), 353362.CrossRefGoogle Scholar
Sundaresan, S.R., Fischhoff, I.R., Dushoff, J., & Rubenstein, D.I., (2007). Network metrics reveal differences in social organization between two fission-fusion species, Grevy’s zebra and onager. Oecologia, 151(1), 140149.CrossRefGoogle ScholarPubMed
Thurston, W. P. (1997). Three-dimensional geometry and topology. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Vaserstein, L. N. (1969). Markov processes over denumerable products of spaces, describing large systems of automata. Problemy Peredachi Informatsii, 5(3), 6472.Google Scholar
Villani, C. (2009). Optimal transport: old and new . Grundlehren der mathematischen Wissenschaften, vol. 338. Berlin Heidelberg: Springer-Verlag.Google Scholar
Wang, C., Jonckheere, E., & Banirazi, R., R. (2014) Wireless network capacity versus Ollivier-Ricci curvature under Heat Diffusion (HD) protocol. In 2014 American control conference (ACC) (pp. 35363541). Portland, OR: IEEE.CrossRefGoogle Scholar
Wang, C., Jonckheere, E., & Banirazi, R., R. (2014) Interference constrained network performance control based on curvature control. In 2016 American control conference (ACC) (pp. 60366041). Boston, MA: IEEE.Google Scholar
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of small-world networks. Nature, 393(6684), 440442.CrossRefGoogle Scholar
Weber, M., Saucan, E., & Jost, J. (2017). Characterizing complex networks with Forman-Ricci curvature and associated geometric flows. Journal of Complex Networks, 5(4), 527550.CrossRefGoogle Scholar
Weber, M., Saucan, E., & Jost, J. (2018). Coarse geometry of evolving networks. Journal of complex networks, 6(5), 706732.CrossRefGoogle Scholar
Zachary, W. W. (1977). An information flow model for conflict and fission in small groups. Journal of Anthropological Research, 33(4), 452473.CrossRefGoogle Scholar
Zeng, W., Sarkar, R., Luo, F., Gu, X. D., & Gao, J. (2010). Resilient routing for sensor networks using hyperbolic embedding of universal covering space. In 2010 IEEE conference on computer communications (INFOCOM) (pp. 19). San Diego, CA: IEEE.Google Scholar