Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T19:48:09.609Z Has data issue: false hasContentIssue false

Generalized graphlet kernels for probabilistic inference in sparse graphs

Published online by Cambridge University Press:  01 August 2014

JOSE LUGO-MARTINEZ
Affiliation:
Department of Computer Science and Informatics, Indiana University, Bloomington, Indiana 47405, U.S.A. (e-mail: [email protected], [email protected])
PREDRAG RADIVOJAC
Affiliation:
Department of Computer Science and Informatics, Indiana University, Bloomington, Indiana 47405, U.S.A. (e-mail: [email protected], [email protected])

Abstract

Graph kernels for learning and inference on sparse graphs have been widely studied. However, the problem of designing robust kernel functions that can effectively compare graph neighborhoods in the presence of noisy and complex data remains less explored. Here we propose a novel graph-based kernel method referred to as an edit distance graphlet kernel. The method was designed to add flexibility in capturing similarities between local graph neighborhoods as a means of probabilistically annotating vertices in sparse and labeled graphs. We report experiments on nine real-life data sets from molecular biology and social sciences and provide evidence that the new kernels perform favorably compared to established approaches. However, when both performance accuracy and run time are considered, we suggest that edit distance kernels are best suited for inference on graphs derived from protein structures. Finally, we demonstrate that the new approach facilitates simple and principled ways of integrating domain knowledge into classification and point out that our methodology extends beyond classification; e.g. to applications such as kernel-based clustering of graphs or approximate motif finding. Availability: www.sourceforge.net/projects/graphletkernels/

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamic, L. A., & Glance, N. (2005). The political blogosphere and the 2004 U.S. election: Divided they blog. In Proceedings of the 3rd International Workshop on Link Discovery (pp. 36–43). LinkKDD '05.Google Scholar
Aral, S., & Walker, D. (2012). Identifying influential and susceptible members of social networks. Science, 337 (6092), 337341.Google Scholar
Bondy, J. A., & Hemminger, R. L. (1977). Graph reconstruction-a survey. Journal of Graph Theory, 1 (3), 227268.Google Scholar
Borgs, C., Chayes, J., Lovász, L., Sós, V. T., & Vesztergombi, K. (2006). Counting graph homomorphisms. In Topics discrete math (pp. 315371). Algorithms and Combinatorics, vol. 26. Berlin Heidelberg: Springer.Google Scholar
Borgwardt, K. M., & Kriegel, H. P. (2005). Shortest-path kernels on graphs. In Proceedings of the 5th International Conference on Data Mining (pp. 74–81). ICDM '05.Google Scholar
Borgwardt, K. M., Ong, C. S., Schonauer, S., Vishwanathan, S. V., Smola, A. J., & Kriegel, H. P. (2005). Protein function prediction via graph kernels. Bioinformatics, 21 (Suppl 1), i47i56.CrossRefGoogle ScholarPubMed
Clark, W. T., & Radivojac, P. (2011). Analysis of protein function and its prediction from amino acid sequence. Proteins, 79 (7), 20862096.CrossRefGoogle ScholarPubMed
Conover, M., Ratkiewicz, J., Francisco, M., Goncalves, B., Flammini, A., & Menczer, F. (2011). Political polarization on twitter. In Proceedings of the 5th International Conference on Weblogs and Social Media (pp. 89–96). ICWSM '11.Google Scholar
Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486 (3–5), 75174.CrossRefGoogle Scholar
Fouss, F., Pirotte, A., Renders, J.-M., & Saerens, M. (2007). Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. Transactions on Knowledge and Data Engineering, 19 (3), 355369.Google Scholar
Frank, O. (1988). The triad count statistics. Journal on Discrete Mathematics, 72, 141149.CrossRefGoogle Scholar
Gärtner, T., Flach, P., & Wrobel, S. (2003). On graph kernels: Hardness results and efficient alternatives. Learning Theory and Kernel Machines, 129–143.Google Scholar
Gönen, M., & Alpaydin, E. (2011). Multiple kernel learning algorithms. Journal of Machine Learning Research, 12, 22112268.Google Scholar
Gray, V. E., & Kumar, S. (2011). Rampant purifying selection conserves positions with posttranslational modifications in human proteins. Molecular Biology and Evolution, 28 (5), 15651568.Google Scholar
Gutteridge, A., Bartlett, G. J., & Thornton, J. M. (2003). Using a neural network and spatial clustering to predict the location of active sites in enzymes. Journal of Molecular Biology, 330 (4), 719734.Google Scholar
Halperin, I., Glazer, D., Wu, S., & Altman, R. (2008). The FEATURE framework for protein function annotation: modeling new functions, improving performance, and extending to novel applications. BMC Genomics, 9 (Suppl 2), S2.Google Scholar
Hanley, J. A. & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143 (1), 2936.Google Scholar
Harary, F., & Palmer, E. M. (1973). Graphical enumeration. Academic Press.Google Scholar
Haussler, D. (1999). Convolution kernels on discrete structures. Technical Report UCSCCRL-99-10, University of California at Santa Cruz.Google Scholar
Henikoff, S, & Henikoff, J. G. (1992). Amino acid substitution matrices from protein blocks. Proceedings of the National Academy of Sciences of the United States of America, 89 (22), 10915–10919.Google Scholar
Hido, S., & Kashima, H. (2009). A linear-time graph kernel. In Proceedings of the 9th International Conference on Data Mining (pp. 179–188). ICDM '09.Google Scholar
Horváth, T., Gärtner, T., & Wrobel, S. (2004). Cyclic pattern kernels for predictive graph mining. In Proceedings of the 10th International Conference on Knowledge Discovery and Data Mining (pp. 158–167). KDD '04.Google Scholar
Jiang, C., Coenen, F., & Zito, M. (2013). A survey of frequent subgraph mining algorithms. The Knowledge Engineering Review, 28 (2), 75105.Google Scholar
Joachims, T. (2002). Learning to classify text using support vector machines: methods, theory, and algorithms. Kluwer Academic Publishers.Google Scholar
Kashima, H., Tsuda, K., & Inokuchi, A. (2003). Marginalized kernels between labeled graphs. In Proceedings of the 20th International Conference on Machine Learning (pp. 321–328). ICML '03.Google Scholar
Koller, D., & Friedman, N. (2009). Probabilistic graphical models: Principles and techniques. MIT Press.Google Scholar
Kondor, R. I., & Lafferty, J. D. (2002). Diffusion kernels on graphs and other discrete structures. In Proceedings of the 19th International Conference on Machine Learning (pp. 315–322). ICML '02.Google Scholar
Kuang, R., Ie, E., Wang, K., Wang, K., Siddiqi, M., Freund, Y., & Leslie, C. (2005). Profile-based string kernels for remote homology detection and motif extraction. J Bioinform Comput Biol, 3, 527550.Google Scholar
Landry, C. R., Levy, E. D., & Michnick, S. W. (2009). Low functional constraints on phosphoproteomes. Trends in Genetics, 25 (5), 193197.Google Scholar
Leskovec, J., Adamic, L. A., & Huberman, B. A. (2007). The dynamics of viral marketing. ACM Transactions on the Web, 1 (1).Google Scholar
Leslie, C., Eskin, E., & Noble, W. S. (2002). The spectrum kernel: A string kernel for SVM protein classification. Pac Symp Biocomput, 564–575.Google Scholar
Leslie, C., & Kuang, R. (2004). Fast string kernels using inexact matching for protein sequences. Journal of Machine Learning Research, 5, 14351455.Google Scholar
Liben-Nowell, D., & Kleinberg, J. (2007). The link-prediction problem for social networks. Journal of the American Society for Information Science and Technology, 58 (7), 10191031.Google Scholar
Lovász, L. (1967). Operations with structures. Acta Math Hung, 18 (3-4).Google Scholar
Menchetti, S., Costa, F., & Frasconi, P. (2005). Weighted decomposition kernels. In Proceedings of the 22nd International Conference on Machine Learning (pp. 585–592). ICML '05.Google Scholar
Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., & Alon, U. (2002). Network motifs: simple building blocks of complex networks. Science, 298, 824827.Google Scholar
Moreau, Y., & Tranchevent, L.C. (2012). Computational tools for prioritizing candidate genes: Boosting disease gene discovery. Nature Reviews Genetics, 13 (8), 523536.Google Scholar
Nabieva, E., Jim, K., Agarwal, A., Chazelle, B., & Singh, M. (2005). Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics, 21 (Suppl 1), i302i310.Google Scholar
Pei, J., & Grishin, N. V. (2001). AL2CO: calculation of positional conservation in a protein sequence alignment. Bioinformatics, 17 (8), 700712.Google Scholar
Pólya, G. (1937). Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen. Acta Mathematica, 68, 145254.Google Scholar
Przulj, N. (2007). Biological network comparison using graphlet degree distribution. Bioinformatics, 23 (2), e177e183.Google Scholar
Przulj, N., Corneil, D. G., & Jurisica, I. (2004). Modeling interactome: scale-free or geometric? Bioinformatics, 20 (18), 35083515.Google Scholar
Radivojac, P., Peng, K., Clark, W. T., Peters, B. J., Mohan, A., Boyle, S. M., & Mooney, S. D. (2008). An integrated approach to inferring gene-disease associations in humans. Proteins, 72 (3), 10301037.Google Scholar
Ralaivola, L., Swamidass, S. J., Saigo, H., & Baldi, P. (2005). Graph kernels for chemical informatics. Neural Networks, 18 (8), 10931110.Google Scholar
Ramon, J., & Gärtner, T. (2003). Expressivity versus efficiency of graph kernels. In Proceedings of the 1st International Workshop on Mining Graphs, Trees and Sequences, pp. 65–74.Google Scholar
Rieck, K., & Laskov, P. (2008). Linear-time computation of similarity measures for sequential data. Journal of Machine Learning Research, 9, 2348.Google Scholar
Sharan, R., Ulitsky, I., & Shamir, R. (2007). Network-based prediction of protein function. Mol Syst Biol, 3, 88.Google Scholar
Shawe-Taylor, J., & Cristianini, N. (2004). Kernel methods for pattern analysis. New York, NY, USA: Cambridge University Press.CrossRefGoogle Scholar
Shervashidze, N., Schweitzer, P., van Leeuwen, E. J., Mehlhorn, K., & Borgwardt, K. M. (2011). Weisfeiler-Lehman graph kernels. Journal of Machine Learning Research, 12, 25392561.Google Scholar
Shervashidze, N., Vishwanathan, S. V. N., Petri, T. H., Mehlhorn, K., & Borgwardt, K. M. (2009). Efficient graphlet kernels for large graph comparison. In Proceedings of the 12th International Conference on Artificial Intelligence and Statistics, pp. 488–495. AISTATS '09.Google Scholar
Tsuda, K., & Saigo, H. (2010). Graph classification. In Managing and mining graph data (pp. 337363). Advances in Database Systems, vol. 40. Springer.CrossRefGoogle Scholar
Vacic, V., Iakoucheva, L. M., Lonardi, S., & Radivojac, P. (2010). Graphlet kernels for prediction of functional residues in protein structures. Journal of Computational Biology, 17 (1), 5572.Google Scholar
Vishwanathan, S. V. N., Schraudolph, N. N., Kondor, R. I., & Borgwardt, K. M. (2010). Graph kernels. Journal of Machine Learning Research, 11, 12011242.Google Scholar
Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge University Press.Google Scholar
Xin, F., Myers, S., Li, Y. F., Cooper, D. N., Mooney, S. D., & Radivojac, P. (2010). Structure-based kernels for the prediction of catalytic residues and their involvement in human inherited disease. Bioinformatics, 26 (16), 19751982.CrossRefGoogle ScholarPubMed
Xin, F., & Radivojac, P. (2011). Computational methods for identification of functional residues in protein structures. Current Protein and Peptide Science, 12, 456469.Google Scholar
Xu, J., & Li, Y. (2006). Discovering disease-genes by topological features in human protein-protein interaction network. Bioinformatics, 22 (22), 28002805.Google Scholar
Zhu, X., & Ghahramani, Z. (2002). Learning from labeled and unlabeled data with label propagation. Technical Report CMU-CALD-02-107, Carnegie Mellon University.Google Scholar