Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T04:17:42.133Z Has data issue: false hasContentIssue false

The timing of aeolian events near archaeological settlements around Heidebos (Moervaart area, N Belgium)

Published online by Cambridge University Press:  24 March 2014

C. Derese*
Affiliation:
Laboratory of Mineralogy and Petrology (Luminescence Research Group), Department of Geology and Soil Science, Ghent University, Krijgslaan 281 (S8), B-9000 Gent, Belgium
D.A.G. Vandenberghe
Affiliation:
Laboratory of Mineralogy and Petrology (Luminescence Research Group), Department of Geology and Soil Science, Ghent University, Krijgslaan 281 (S8), B-9000 Gent, Belgium
A. Zwertvaegher
Affiliation:
Laboratory of Soil Science, Department of Geology and Soil Science, Ghent University, Krijgslaan 281 (S8), B-9000 Gent, Belgium
M. Court-Picon
Affiliation:
Laboratory of Palaeontology, Department of Geology and Soil Science, Ghent University, Krijgslaan 281 (S8), B-9000 Gent, Belgium
P. Crombé
Affiliation:
Prehistory and Protohistory Research Group, Department of Archaeology, Ghent University, Sint-Pietersnieuwstraat 35 (Ufo), B-9000 Gent, Belgium
J. Verniers
Affiliation:
Laboratory of Palaeontology, Department of Geology and Soil Science, Ghent University, Krijgslaan 281 (S8), B-9000 Gent, Belgium
P. Van den haute
Affiliation:
Laboratory of Mineralogy and Petrology (Luminescence Research Group), Department of Geology and Soil Science, Ghent University, Krijgslaan 281 (S8), B-9000 Gent, Belgium

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

At the locality of Heidebos (Moervaart area, N Flanders, Belgium), a sedimentary core was taken in the Maldegem-Stekene coversand ridge and dated using optically stimulated luminescence (OSL). The study aimed at contributing to an improved understanding of the evolution of the physical landscape around archaeological settlements in this area. The core comprised a 7 m thick series of laminated and massive aeolian sands, in which several organic layers were intercalated. From this sequence, 11 samples were collected for quartz-based SAR-OSL dating; an internally consistent dataset was obtained. The ages of the lowermost 1 m of the sedimentary sequence (15.5±1.1 ka and 17.3±1.3 ka) imply that these sediments may represent the time-equivalent deposit of a deflation phase that occurred during the Late Pleniglacial and led to the formation of a widespread desert pavement, regionally known as the Beuningen Gravel Bed. However, a significant part of the sediments (at least 4 m) was deposited later, i.e. during the Allerød and/or the Late Dryas. As such, the results allow establishing the genesis of the coversand ridge at the Heidebos locality on the basis of direct age information. The relatively high sedimentation rate and the absence of extensive soil formation in the record reflect periods of pronounced aeolian activity and landscape instability during the Late Glacial, which provides part of the environmental framework for human occupation in the area.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2013

References

Adamiec, G. & Aitken, M., 1998. Dose-rate conversion factors: update. Ancient TL 16: 3750.Google Scholar
Aitken, M.J., 1976. Thermoluminescence age evaluation and assessment of error limits: revised system. Archaeometry 18: 233238.Google Scholar
Aitken, M.J., 1985. Thermoluminescence dating. Academic Press Inc. (London): 359 pp.Google Scholar
Aitken, M.J. & Alldred, J.C., 1972. The assessment of error limits in thermoluminescence dating. Archaeometry 14: 257267.Google Scholar
Baeté, H., Christiaens, B., De Keersmaeker, L., Esprit, M., Van De Kerckhove, P. Vandekerkhove, K. & Walleyn, R., 2004. Bosreservaat De Heirnisse basisrapport: situering, standplaats, historiek en onderzoek. Rapporten van het instituut voor bosbouw en wildbeheer – sectie bosbouw 18. Instituut voo Bosbouw en Wildbeheer (Geraardsbergen): 108 pp.Google Scholar
Bats, M., De Reu, J., De Smedt, P., Antrop, M., Bourgeois, J., Court-Picon, M. De Meyer, P., Finke, P., Van Meirvenne, M., Verniers, J., Werbrouck, I. Zwertvaegher, A. & Crombé, P., 2009. Geoarchaeological research of th large palaeolake of the Moervaart (municipalities of Wachtebeke and Moerbeke-Maas, East Flanders, Belgium). From Late Glacial to Early Holocene. Notae Praehistoricae 29: 105112.Google Scholar
Bats, M., De Reu, J., De Smedt, P., Antrop, M., Bourgeois, J., Court-Picon, M. De Meyer, P., Finke, P., Van Meirvenne, M., Verniers, J., Werbrouck, I. Zwertvaegher, A. & Crombé, P., 2010. Continued geoarchaeological research of the large palaeolake of the Moervaart: a preliminary report of the 2010 campaign. Notae Praehistoricae 30: 1521.Google Scholar
Bos, J.A.A & Janssen, C.R., 1996. Local impact of Palaeolithic man on the environment during the end of the Last Glacial in the Netherlands. Journal of Archaeological Science 23: 731739.Google Scholar
Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51: 337360.Google Scholar
Buylaert, J.-P., Ghysels, G., Murray, A.S., Thomsen, K.J., Vandenberghe, D., De Corte, F., Heyse, I. & Van den haute, P., 2009. Optical dating of relict sand wedges and composite-wedge pseudomorphs in Flanders, Belgium. Boreas 38: 160175.Google Scholar
Bøtter-Jensen, L., Andersen, C.E., Duller, G.A.T & Murray, A.S., 2003 Developments in radiation, stimulation and observation facilities in luminescence measurements. Radiation Measurements 37: 535541.Google Scholar
Crombé, Ph. & Cauwe, N., 2001. The Mesolithic. In: Cauwe, N., Hauzeur, A. & van Berg, P.-L. (eds): Prehistory of Belgium. Special issue on the occasion of the XIVth Congress of the International Union for Prehistoric and Protohistoric Sciences. Bulletin de la Société royale belge d'Anthropologie et de Préhistoir 112: 4962.Google Scholar
Crombé, Ph. & Verbruggen, C., 2002. The Lateglacial and early Postglacial occupation of northern Belgium: the evidence from Sandy Flanders. In: Eriksen, B.V. & Bratlund, B. (eds): Recent studies in the Final Palaeolithic of the European plain. Proceedings of a UISPP Symposium, Stockholm 1999. Jutland Archaeological Society Publications: 165180.Google Scholar
De Bie, M. & Vermeersch, P.M., 1998. Pleistocene-Holocene transition in Benelux. Quaternary International 49/50: 2943.Google Scholar
De Corte, F., Vandenberghe, D., De Wispelaere, A., Buylaert, J.-P. & Van den haute, P., 2006. Radon loss from encapsulated sediments in Ge gamma-ray spectrometry for the annual radiation dose determination in luminescence dating. Czech Journal of Physics 56: D183D194.Google Scholar
Deeben, J. & Rensink, E., 2005. Het Laat-Paleolithicum in Zuid-Nederland. In: Deeben, J., Drenth, E., Van Oorsouw, M.-F. & Verhart, L. (eds): De Steentijd van Nederland. Archeologie 11/12: 171199.Google Scholar
De Moor, G., 1963. Bijdrage tot de kennis van de fysische landschapsvorming in Binnen-Vlaanderen. Tijdschrift van de Belgische Vereniging voor Aardrijkskundige Studies 32: 329433.Google Scholar
De Moor, G. & Heyse, I., 1978. De morfologische evolutie van de Vlaamse Vallei. De Aardrijkskunde 4: 343375.Google Scholar
Derese, C., Vandenberghe, D., Paulissen, E. & Van den haute, P., 2009. Revisiting a type locality for Late Glacial aeolian sand deposition in NW Europe: Optical dating of the dune complex at Opgrimbie (NE Belgium). Geomorphology 109: 2735.Google Scholar
Derese, C., Vandenberghe, D., Eggermont, N., Bastiaens, J., Annaert, R. & Van den haute, P., 2010. A medieval settlement caught in the sand: Optical dating of sand-drifting at Pulle (N Belgium). Quaternary Geochronology 5: 336341.Google Scholar
Duller, G.A.T, 2003. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiation Measurements 37: 161165.Google Scholar
Heyse, I., 1979. Bijdrage tot de geomorfologische kennis van het noordwesten van Oost-Vlaanderen (België). Verhandelingen van de Koninklijke Academie voor Wetenschappen, Letteren en Schone Kunsten van België 40: 217 pp.Google Scholar
Hoek, W.Z., 2001. Vegetation response to the ~14.7 and ~11.5 ka cal BP climate transitions: is vegetation lagging climate? Global and Planetary Change 30: 103115.Google Scholar
Kasse, C., 1997. Cold-climate aeolian sand-sheet formation in North-Western Europe (c. 14-12.4 ka); a response to permafrost degradation and increased aridity. Permafrost and Periglacial Processes 8: 295311.Google Scholar
Kasse, C., 2002. Sandy aeolian deposits and environments and their relation to climate during the Last Glacial Maximum and Lateglacial in northwest and central Europe. Progress in Physical Geography 26: 507532.CrossRefGoogle Scholar
Kasse, C., Vandenberghe, D., De Corte, F. & Van den haute, P., 2007. Late Weichselian fluvio-aeolian sands and coversand of the type locality Grubbenvorst (southern Netherlands): sedimentary environments, climate record and age. Journal of Quaternary Science 22: 695708.Google Scholar
Kolstrup, E., 1980. Climate and stratigraphy in northwestern Europe between 30,000 BP and 13,000 BP, with special reference to the Netherlands. Mededelingen Rijks Geologische Dienst 32: 181253.Google Scholar
Kolstrup, E. & Heyse, I., 1980. A different Late-Glacial vegetation and its environment in Flanders (Belgium). Pollen et Spores 22: 469481.Google Scholar
Koster, E.A., 2005. Recent advances in luminescence dating of Late Pleistocene (cold-climate) aeolian sand and loess deposits in Western Europe. Permafrost and Periglacial Processes 16: 131143.Google Scholar
Madsen, A.T. & Murray, A.S., 2009. Optically stimulated luminescence dating of young sediments: A review. Geomorphology 109: 316.Google Scholar
Maréchal, R., 1992. Géologie du Quaternaire, lithologie des terrains superficiels. Deuxième Atlas de Belgique. National Institute of Geography, Commission of the National Atlas (Brussels): 25 pp.Google Scholar
Mejdahl, V., 1979. Thermoluminescence dating: beta-dose attenuation in quartz grains. Archaeometry 21: 6172.CrossRefGoogle Scholar
Murray, A.S. & Olley, J.M., 2002. Precision and accuracy in the optically stimulated luminescence dating of sedimentary quartz: a status review. Geochronometria 21: 116.Google Scholar
Murray, A.S. & Wintle, A.G., 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32: 5773.Google Scholar
Murray, A.S. & Wintle, A.G., 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37: 377381.Google Scholar
Paepe, R. & Vanhoorne, R., 1967. The stratigraphy and palaeobotany of the Late Pleistocene in Belgium. Toelichtende Verhandelingen voor de Geologische Kaart en Mijnkaart van België 8: 96 pp.Google Scholar
Prescott, J.R. & Hutton, J.T., 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23: 497500.Google Scholar
Reimer, P.J., Baillie, M.G.L, Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M, Van der Plicht, J. & Weyhenmeyer, C.E., 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP. Radiocarbon 51: 11111150.Google Scholar
Renssen, H., Kasse, C., Vandenberghe, J. & Lorenz, S.J., 2007. Weichselian Late Pleniglacial surface winds over northwest and central Europe: a model-data comparison. Journal of Quaternary Science 22: 281293.Google Scholar
Sergant, J., Crombé, Ph. & Perdaen, Y., 2009. Mesolithic territories and land-use systems in north-western Belgium. In: McCartan, S.B., Schulting, R., Warren, G. & Woodman, P. (eds): Mesolithic Horizons. Papers presented at the Seventh International Conference on the Mesolithic in Europe, Belfast 2005, Oxbow Books (Oxford): 277281.Google Scholar
Spiers, V., 1986. Mineralogisch en petrografisch onderzoek van de kalkrijke sedimenten van de Moervaartdepressie. Licentiaatsverhandeling, Rijksuniversiteit Gent (Gent): 61 pp.Google Scholar
Street, M., 1998. The archaeology of the Pleistocene-Holocene transition in the northern Rhineland, Germany. Quaternary International 49/50: 4567.Google Scholar
Tavernier, R., 1946. L'évolution du Bas Escaut au Pleistocène supérieur. Bulletin de la Société belge de Géologie, Paléontologie et Hydrologie 55: 106125.Google Scholar
Tavernier, R. & De Moor, G., 1974. L'évolution du basin de l'Escaut. In: Macar, P. (ed.): L'évolution quaternaire des bassins fluviaux de la Mer du Nord méridionale. Colloque du Centenaire de la Société Géologique de Belgique, Liège: 159233.Google Scholar
Terberger, Th., Barton, N. & Street, M., 2009. The Late Glacial reconsidered recent progress and interpretations. In: Street, M., Barton, N. & Terberger, Th. (eds): Humans, environment and chronology of the late glacial of the North European Plain. Proceedings of Workshop 14 of the 15th UISPP Congress, Lisbon, September 2006. RGZM Tagungen, 6: 189207.Google Scholar
Vandenberghe, D., 2004. Investigation of the optically stimulated luminescence dating method for application to young geological samples. Ph.D. thesis, Universiteit Gent (Gent): 358 pp.Google Scholar
Vandenberghe, D., De Corte, F., Buylaert, J.-P., Kučera, J. & Van den haute, P., 2008. On the internal radioactivity in quartz. Radiation Measurements 43: 771775.Google Scholar
Vandenberghe, D., Kasse, C., Hossain, S.M., De Corte, F., Van den haute, P., Fuchs, M. & Murray, A.S., 2004. Exploring the method of optical dating and comparison of optical and 14C ages of Late Weichselian coversands in the southern Netherlands. Journal of Quaternary Science 19: 7386.Google Scholar
Vandenberghe, D., Vanneste, K., Verbeeck, K., Paulissen, E., Buylaert, J.-P., De Corte, F. & Van den haute, P., 2009. Late Weichselian and Holocene earthquake events along the Geleen fault in NE Belgium: OSL age constraints. Quaternary International 199: 5674.Google Scholar
Van der Hammen, T., 1951. Late glacial flora and periglacial phenomena in the Netherlands. Leidse Geologische Mededelingen 17: 71183.Google Scholar
Van der Hammen, T., Wijmstra, T.A., 1971. The Upper Quaternary of the Dinkel valley (Twente, Eastern Overijssel, the Netherlands). Mededelingen Rijks Geologische Dienst 22: 55212.Google Scholar
Van Huissteden, J., 1990. Tundra rivers of the last glacial: sedimentation and geomorphological processes during the Middle Pleniglacial in Twenten eastern Netherlands. Mededelingen Rijks Geologische Dienst 44: 3138.Google Scholar
Van Huissteden, J., Schwan, J.C.G & Bateman, M.D., 2001. Environmental conditions and paleowind directions at the end of the Weichselian Late Pleniglacial recorded in aeolian sediments and geomorphology (Twente, Eastern Netherlands). Geologie en Mijnbouw / Netherlands Journal of Geosciences 80: 118.Google Scholar
Van Strydonck, M., 2005. Radiocarbon dating. In: Crombé, (ed.): The last huntergatherer-fisherman in Sandy Flanders (NW Belgium). The Verrebroek and Doel excavation projects (Vol. 1). Archaeological Reports Ghent University (Gent): 127130.Google Scholar
Verbruggen, C., 1971. Postglaciale landschapsgeschiedenis van zandig Vlaanderen. Botanische, ecologische en morfologische aspekten op basis van palynologisch onderzoek. Ph.D. thesis, Rijksuniversiteit Gent (Gent): 440 pp.Google Scholar
Wallinga, J., Davids, F. & Dijkmans, J.W.A, 2007. Luminescence dating of Netherlands' sediments. Netherlands Journal of Geosciences / Geologie en Mijnbouw 86: 179196.Google Scholar
Wintle, A.G. & Murray, A.S., 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements 41: 369391.Google Scholar