Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T07:17:27.590Z Has data issue: false hasContentIssue false

Subsurface temperature of the onshore Netherlands: new temperature dataset and modelling

Published online by Cambridge University Press:  24 March 2014

D. Bonté*
Affiliation:
Utrecht University, Budapestlaan 4, 3584 CD Utrecht, the Netherlands
J.-D. van Wees
Affiliation:
Utrecht University, Budapestlaan 4, 3584 CD Utrecht, the Netherlands TNO – Geological Survey of the Netherlands, Princetonlaan 6, 3584 CB Utrecht, the Netherlands
J.M. Verweij
Affiliation:
TNO – Geological Survey of the Netherlands, Princetonlaan 6, 3584 CB Utrecht, the Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Subsurface temperature is a key parameter for geothermal energy prospection in sedimentary basins. Here, we present the results of a 3D temperature modelling using a thermal-tectonic forward modelling method, calibrated with subsurface temperature measurements in the Netherlands. The first step involves the generation of a coherent dataset of temperature values for the calibration of the model. In the Netherlands, most of the available measurements (98.8%) are BHT measurements and therefore need to be corrected from the thermal perturbation created during drilling. The remaining 1.2% is composed of DST measurements, which closely resemble the formation temperature (i.e., ±5 °C). The resulting dataset, after correction, gives a total number of 1293 values in 454 wells. Included in this dataset are 412 highly reliable values corrected with the Instantaneous Cylinder Source (ICS) method and 829 values of a lower reliability corrected with the AAPG method. In addition to the corrected values, 52 DST values in 26 wells are available from the Dutch subsurface. The average thermal gradient of this whole dataset is 31.3 °C/km with a surface temperature of 10.1 °C. The second step in the modelling process was the generation of a 3D forward model that focuses on calculating the temperature distribution of the sedimentary basin fill, taking into account the basin evolution of the past 20 Myrs and thermal properties and processes of the whole lithosphere. From the 3D thermal model, we extracted 2D cross sections across well locations to compare model temperatures with calibration data. Furthermore, we present vertical profiles, isodepth maps and temperature projection on geological layers, to discuss the relationship between temperature and geology. Anomalies in this relationship can have several causes and include: 1) the extreme thermal conductivity and complex geometry of the Zechstein salt; 2) enhanced radiogenic heat production of the upper crust due to magmatic intrusions. In addition, our model supports earlier findings that shallow hydrothermal convection in highly permeable sediments can effectively lower thermal conductivity and temperatures in shallow sediments.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2012

References

Artemieva, I.M., Thybo, H. & Kaban, M.K., 2006. Deep Europe today: Geophysical synthesis of the upper mantle structure and lithospheric processes over 3.5 By. In: Gee, D.G. & Stephenson, R.A. (eds): European Lithosphere Dynamics. Geological Society Memoir (London): 1441.Google Scholar
Axelsson, G. & Gunnlaugsson, E., 2000. Geothermal utilisation, management and monitoring. In: Long-term monitoring of high- and low enthalpy fields under exploitation. WGC 2000 Short Courses, Japan: 310.Google Scholar
Benderitter, Y. & Cormy, G., 1990. Possible approach to geothermal research and relative costs. In: Dickson, M.H. & Fanelli, M. (eds): Small Geothermal Resources: A Guide to Development and Utilization. UNITAR (New York): 5969.Google Scholar
Blackwell, D.D. & Richards, M., 2004. Calibration of the AAPG Geothermal Survey of North America BHT Data Base. AAPG Annual Meeting, paper 87616 (Dallas, Texas).Google Scholar
Bonté, D., Guillou-Frottier, L., Garibaldi, C., Bourgine, B., Lopez, S., Bouchot, V. & Lucazeau, F., 2010. Subsurface temperature maps in French sedimentary basins: new data compilation and interpolation. Bulletin de la Société Géologique de France 181: 377390.Google Scholar
Boxem, T.A.P., 2010. Steady state 1D temperature modeling of the onshore Dutch subsurface. Netherlands Institute of Applied Science TNO – National Geological Survey (Utrecht), 86 pp. Report number TNO-034-UT-2010-01686.Google Scholar
Brigaud, F., 1989. Conductivité thermique et champ de température dans les bassins sédimentaires à partir des données de puits. PhD thesis, Université Montpellier, 414 pp.Google Scholar
Cloetingh, S., Van Wees, J.D., Ziegler, P.A., Lenkey, L., Beekman, F., Tesauro, M., Förster, A., Norden, B., Kaban, M., Hardebol, N., Bonté, D., , Genter, A., Guillou-Frottier, L., Ter Voorde, M., Sokoutis, D., Willingshofer, E., Cornu, T. & Worum, G., 2010. Lithosphere tectonics and thermo-mechanical properties: an integrated modelling approach for Enhanced Geothermal Systems exploration in Europe. Earth Science Reviews 102: 159206.Google Scholar
De Jager, J., 2007. Geological development. In: Wong, T.E., Batjes, D.A.J. & De Jager, J. (eds): Geology of the Netherlands. Royal Netherlands Academy of Arts and Sciences (KNAW) (Amsterdam): 526.Google Scholar
Deming, D., 1989. Application of bottom-hole temperature corrections in geothermal studies. Geothermics 18: 775786.Google Scholar
Donders, T.H., Weijers, J.W.H., Munsterman, D.K., Kloosterboer-van Hoeve, M.L., Buckles, L.K., Pancost, R.D., Schouten, S., Sinninghe Damste, J.S. & Brinkhuis, H., 2009. Strong climate coupling of terrestrial and marine environments in the Miocene of northwest Europe. Earth and Planetary Science Letters 281: 215225.Google Scholar
Garibaldi, C., 2010. Détermination des températures profondes du Bassin du Sud-Est de la France et relations entre anomalies thermiques, géologie et circulations hydrothermales par modélisation 3D. PhD thesis, Université de Nice Sophia-Antipolis, 284 pp.Google Scholar
Garibaldi, C., Guillou-Frottier, L., Lardeaux, J.-M., Bonté, D., Lopez, S., Bourgine, B. & Bouchot, V., 2010. Relationship between thermal anomalies, geological structures and fluid flow: new evidences in application to the Provence basin (south-east France). Bulletin de la Société Géologique de France 181: 363376.Google Scholar
Geluk, M.C., 2005. Stratigraphy and tectonics of Permo-Triassic basins in the Netherlands and surrounding areas. PhD thesis, Utrecht University (Utrecht), 171 pp.Google Scholar
Geluk, M.C., 2007. Permian. In: Wong, T.E., Batjes, D.A.J. & De Jager, J. (eds): Geology of the Netherlands. Royal Netherlands Academy of Arts and Sciences (KNAW) (Amsterdam): 6384.Google Scholar
Goutorbe, B., Lucazeau, F. & Bonneville, A., 2007. Comparison of several BHT correction methods: a case study on an Australian data set. Geophysical Journal International 170: 913922.Google Scholar
Haenel, R., Legrand, R., Balling, N., Bram, K., Gable, R., Fanelli, M., Prins, S., Burley, A.J., Edmunds, W., Oxburgh, E., Richardson, S. & Wheildon, J. (eds), 1980. Atlas of subsurface temperatures in the European Community. Commission of the European Communities, Directorate-General Scientific and Technical Information and Information Management (Hannover), 36 pp.Google Scholar
Haenel, R. & Staroste, E., 1988. Atlas of geothermal resources in the European Community, Austria and Switzerland, (Luxemburg).Google Scholar
Hantschel, T. & Kauerauf, A.I., 2009. Fundamentals of Basin and Petroleum Systems Modeling. Springer-Verlag (Berlin Heidelberg), 476 pp.Google Scholar
Harrison, W.E., Luza, K.V., Prater, M.L. & P.K., C., , 1983. Geothermal resource assessment of Oklahoma. Oklahoma Geological Survey, Special Publications 83–91, 42 pp.Google Scholar
Harting, P., 1879. Temperatuurbepalingen in een put van 369 meters diepte te Utrecht. Verslagen en Mededelingen. Koninklijke Nederlandse Academie van Wetenschappen. Afdeling Natuurkunde: 393409.Google Scholar
Hermanrud, C. & Shen, P.Y., 1989. Virgin rock temperatures from well-logs-accuracy analysis of some advanced inversion models. Marine and Petroleum Geology 6: 360363.CrossRefGoogle Scholar
Hochstein, M.P., 1990. Classification and assessment of geothermal resources. In: Dickson, M.H. & Fanelli, M. (eds): Small Geothermal Resources: A Guide to Development and Utilization. UNITAR (New York): 3157.Google Scholar
Hurter, S. & Haenel, R., 2002. Atlas of geothermal resources in Europe. Commission of the European Communities (Luxemburg), 92 pp.Google Scholar
Hurtig, E., Cermak, V., Haenel, R. & Zui, V.I., 1992. Geothermal Atlas of Europe. Hermann Haack Verlagsgesellschaft mbH, Geographische-Kartographische Anstalt (Gotha), 156 pp.Google Scholar
Jaupart, C. & J.-C., M., , 2007. Heat flow and thermal structure of the lithosphere. In: Schubert, G. (ed.): Treatise on Geophysics 6: 217252.Google Scholar
Jolivet, J., Bienfait, G., Vigneresse, J.-L. & Cuney, M., 1989. Heat flow and heat production in Brittany (western France). Tectonophysics 159: 6172.Google Scholar
Kramers, L., Van Wees, J.-D., Pluymaekers, M.P.D., Kronimus, A. & Boxem, T., 2012. Direct heat resource assessment and subsurface information systems for geothermal aquifers; the Dutch perspective. Netherlands Journal of Geosciences 91–94: 637649, this issue.Google Scholar
Kombrink, H., Leever, K.A., Van Wees, J.D., Van Bergen, F., David, P. & Wong, T.E., 2008. Late Carboniferous foreland basin formation and Early Carboniferous stretching in Northwestern Europe – Inferences from quantitative subsidence analyses in the Netherlands. Basin Research 20: 377395.Google Scholar
Kombrink, H., Doornenbal, J.C., Duin, E.J.T., Den Dulk, M., Van Gessel, S.F., Ten Veen, J.H. & Witmans, N., 2012. New insights into the geological structure of the Netherlands; results of a detailed mapping project. Netherlands Journal of Geosciences 91–94: 419446, this issue.Google Scholar
Lampe, C. & Person, M., 2002. Advective cooling within sedimentary rift basins – application to the Upper Rhine Graben (Germany). Marine and Petroleum Geology 19: 361375.Google Scholar
Lampe, C., Person, M., Noth, S. & Ricken, W., 2001. Episodic fluid flow within continental rift basins: some insights from field data and mathematical models of the Rhine Graben. Geofluids 1: 4252.Google Scholar
Lindal, B., 1973. Industrial and other applications of geothermal energy. In: Geothermal energy: Review of research and development. UNESCO, Paris, LC No. 72-97138: 135148.Google Scholar
Lokhorst, A. & Van Montfrans, H.M., 1988. The Netherlands. In: Haenel, R. & Staroste, E. (eds): Atlas of Geothermal Resources in the European Community, Austria and Switzerland. Commission of the European Communities (Brussels): 4345.Google Scholar
Lokhorst, A. & Wong, T.E., 2007. Geothermal Energy. In: Wong, T.E., Batjes, D.A.J. & De Jager, J. (eds): Geology of the Netherlands. Royal Netherlands Academy of Arts and Sciences (KNAW) (Amsterdam): 341346.Google Scholar
Luijendijk, E., Ter Voorde, M., Van Balen, R., Verweij, H. & Simmelink, H., 2011. Thermal state of the Roer Valley Graben, part of the European Cenozoic Rift System. Basin Research 23: 6582.Google Scholar
Muffler, P. & Cataldi, R., 1978. Methods for regional assessment of geothermal resources. Geothermics 7: 5389.Google Scholar
Nicholson, K., 1993. Geothermal Fluids. Springer Verlag (Berlin), 264 pp.Google Scholar
Pharaoh, T.C., Dusar, M., Geluk, M.C., Kockel, F., Krawczyk, C.M., Krzywiec, P., Scheck-Wenderoth, M., Thybo, H., Vejbæk, O.V. & Van Wees, J.D., 2010. Tectonic Evolution. In: Doornenbal, J.C. & Stevenson, A.G. (eds): Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications b.v. (Houten): 2557.Google Scholar
Pluymaekers, M.P.D., Kramers, L., Van Wees, J.D., Kronimus, A., Nelskamp, S., Boxem, T. & Bonté, D., 2012. Reservoir characterisation of aquifers for direct heat production: Methodology and screening of the potential reservoirs for the Netherlands. Netherlands Journal of Geosciences 91–94: 621636, this issue.Google Scholar
Press, W.H., Flannery, B.P., Teukolsky, S.A. & Vetterling, W.T., 1988. Numerical Recipes in C. Cambridge University Press (Cambridge), 513 pp.Google Scholar
Prins, S., 1980. The Netherlands. In: Haenel, R. (ed.): Atlas of subsurface temperatures in the European Community. Commission of the European communities. Th. Schaefer GmbH (Hannover), 36 pp.Google Scholar
Ramaekers, J.J.F., 1992. The Netherlands. In: Hurtig, E., Cermak, V., Hanel, R. & Zui, V. (eds): Geothermal Atlas of Europe. Hermann Haack Verlagsgesellschaft GmbH.Google Scholar
Rijkers, R. & Van Doorn, T.H.M., 1997. Atlas of geothermal resources in the European Community, the Netherlands. Netherlands Institute of Applied Geoscience TNO (Utrecht), Report number Report 97-24-A.Google Scholar
Sadée, C.P.M., 1975. An interpretation of South-Limburg subsurface temperature data. Geologie en Mijnbouw 54: 184193.Google Scholar
Simmelink, H.J., Underschultz, J.R., Verweij, J.M., Hennig, A., Pagnier, H.J.M. & Otto, C.J., 2003. A pressure and fluid dynamic study of the Southern North Sea Basin. Journal of Geochemical Exploration 78–79: 187190.Google Scholar
Simmelink, H.J., Verweij, J.M., Underschultz, J. & Otto, C., 2008. Overpressure distribution in the offshore Netherlands. Overpressure 2008: Present and Future Challenges – A Research Conference (Durham).Google Scholar
Sleep, N.H., 2005. Evolution of continental lithosphere. Annual Review of Earth and Planetary Sciences 33: 369393.Google Scholar
Steffensen, R.J. & Smith, R.C., 1973. The importance of Joule-Thomson heating (or cooling) in temperature log interpretation. Paper 4636, SPE Annual Meeting (Las Vegas).Google Scholar
Tesauro, M., Kaban, M.K. & Cloetingh, S.A.P.L., 2008. EuCRUST-07: a new reference model for the European crust. Geophysical Research Letters 35: L05313.Google Scholar
TNO-NITG, 2004. Geological Atlas of the Subsurface of the Netherlands – onshore. Netherlands Institute of Applied Geoscience TNO (Utrecht), 104 pp.Google Scholar
Van Balen, R.T., Verweij, J.M., Van Wees, J.D., Simmelink, H., Van Bergen, F. & Pagnier, H.J.M., 2002. Deep subsurface temperatures in the Roer Valley Graben and the Peelblock, the Netherlands – new results. Netherlands Journal of Geosciences 81: 1926.Google Scholar
Van Dalfsen, W., 1983. Het ondiep ondergrondse temperatuurveld in Nederland. Dienst Grondwater Verkenning TNO (Delft), Report number Report OS 83-31.Google Scholar
Van Doorn, T.H.M. & Rijkers, R.H.B., 2002. The Netherlands. In: Hurter, S. & Haenel, R. (eds): Atlas of Geothermal Resources in the European Community. Office for Official Publications of the European Communities (Luxemburg).Google Scholar
Van Engen, H., 1975. An interpretation of Groningen subsurface temperature data. Geologie en Mijnbouw 54: 177183.Google Scholar
Van Wees, J.D., Stephenson, R.A., Ziegler, P.A., Bayer, U., McCann, T., Dadlez, R., Gaupp, R., Narkiewicz, M., Bitzer, F. & Scheck, M., 2000. On the origin of the Southern Permian Basin, Central Europe. Marine and Petroleum Geology 17: 4359.Google Scholar
Van Wees, J.D., Van Bergen, F., David, P., Nepveu, M., Beekman, F., Cloetingh, S.A.P.L. & Bonté, D., 2009. Probabilistic tectonic heat flow modeling for basin maturation: Assessment method and applications. Marine and Petroleum Geology 26: 536551.Google Scholar
Vermooten, J.S.A., Verweij, J.M. & Simmelink, H.J., 2004. Quality control, correction and analysis of temperature borehole data in offshore Netherlands. Report A: Quality control and correction of temperature borehole data; Part B: Analysis and interpretation of corrected temperatures from wells in offshore Netherlands ‘Influence of Zechstein salt diapirs and pillows on the geothermal gradient’. Netherlands Institute of Applied Geoscience TNO – National Geological Survey (Utrecht). Report number NITG 04-043-B0506, 75 pp.Google Scholar
Verweij, J.M., 2003. Fluid flow systems analysis on geological timescales in onshore and offshore Netherlands, with special reference to the Broad Fourteens Basin. PhD thesis, Vrije Universiteit (Amsterdam), 278 pp.Google Scholar
Verweij, J.M., Souto Carneiro Echternach, M., Witmans, N. & Abdul Fattah, R., 2012. Reconstruction of basal heat flow, surface temperature, source rock maturity and hydrocarbon generation in salt-dominated Dutch Basins. In: Peters, K., Curry, D. & Kacewicz, M. (eds): Basin Modeling: New horizons in research and applications. AAPG Hedberg Series: 1-22.Google Scholar
Verwer, J.G., 1977. Explicit Runge-Kutta methods for parabolic partial differential equations. Applied Numerical Mathematics 22: 359379.Google Scholar
Visser, W.A., 1978. Early subsurface temperature measurements in the Netherlands. Geologie en Mijnbouw 57: 110.Google Scholar
Ziegler, P.A., 1990. Geological Atlas of Western and Central Europe (2nd edition). Shell Internationale Petroleum Maatschappij B.V.; Geological Society Publishing House (Bath), 239 pp.Google Scholar