Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T00:53:53.307Z Has data issue: false hasContentIssue false

Spatial prediction of the variability of Early Pleistocene subsurface sediments in the Netherlands - Part 1: Heavy minerals

Published online by Cambridge University Press:  01 April 2016

D.J. Huisman
Affiliation:
Netherlands Institute of Applied Geoscience TNO (TNO-NITG), P.O. Box 80015, 3508 TA UTRECHT, the Netherlands; corresponding author; e-mail: [email protected]
J.P. Weijers
Affiliation:
Heerlen Municipality, P.O. Box 36, 6430 AA HOENSBROEK, the Netherlands
L. Dijkshoorn
Affiliation:
TAUW B.V., P.O. Box 594, 6130 AN SITTARD, the Netherlands; e-mail: [email protected]
A. Veldkamp
Affiliation:
Wageningen Agricultural University, Laboratory for Soil Science and Geology, P.O. Box 37, 6700 AA WAGENINGEN, the Netherlands; e-mail: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigated the spatial variability of the heavy-mineral composition in the Early Pleistocene fluviatile Kedichem Formation in the Netherlands in order to meet the demand for more information about subsurface sediment composition. We first determined the spatial extension and thickness of the sediment body, then used Fuzzy clustering techniques on a database containing approx. 2000 heavy-mineral counts from the Kedichem Formation to map the spatial extension of the various sediment provenances within the formation. Three clusters could be discerned, one representing a combined Meuse-Scheldt source, the other two representing a mixed Rhine-Baltic source. We made slice maps at several depths through the formation, and plotted the cluster memberships.

The maps show an overall dominance of the Meuse-Scheldt source in the south of the Netherlands, whereas the Rhine-Baltic source occurs mainly in the central Netherlands. The methods employed show that it is possible to map and study the 3-D variation in heavy-mineral composition and hence sediment provenance in the Dutch subsurface with the use of simple statistical and visualization techniques.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2000

References

Broers, H.P., Hoogendoorn, J.H. & Houtman, H., 1992. Opbouw van het geohydrologische lagenmodel van Regis/digitale grond-waterkaart. Internal Report TNO-GG (Delft) OS 92-01-A: 76 pp.Google Scholar
Davis, J.C., 1986. Statistics and data analysis in geology (2nd ed.). John Wiley and Sons (New York): 646 pp.Google Scholar
Edelman, C.H., 1933. Petrologische provincies in het Nederlandsche Kwartair. D.B. Centen’s Uitgevers Maatschappij (Amsterdam): 103 pp.Google Scholar
Frapponi, G., Vriend, S.P. & Van Gaans, P.F.M., 1993. Hydrogeo-chemistry of the shallow Dutch ground water; interpretation of the national ground water quality monitoring network. Water Resources Research 29: 29933004.CrossRefGoogle Scholar
Huisman, D.J. & Kiden, P., 1998. A geochemical record of late Cenozoic sedimentation history in the southern Netherlands. Geologie en Mijnbouw 76: 277292.CrossRefGoogle Scholar
Huisman, D.J., Weijers, J.P., Dijkshoorn, L. & Veldkamp, A., 2000a. Spatial prediction of variability of Early Pleistocene subsurface sediments in the Netherlands. Part 2: Geochemistry. In: Van Gaans, P. & Vriend, S.P. (Eds.): Geochemical mapping in the Kingdom of the Netherlands. Geologie en Mijnbouw / Netherlands Journal of Geosciences 79: 381390 (this issue).CrossRefGoogle Scholar
Huisman, D.J., Klaver, G.Th., Veldkamp, A. & Van Os, B.J.H., 2000b. Geochemical compositional changes of the Pliocene-Pleistocene transition in fluviodeltaic deposits in the Netherlands. International Journal of Geosciences/Geologische Rundschau 89: 154169.Google Scholar
Kasse, C. 1988. Early Pleistocene tidal and fluviatile environments in the Southern Netherlands and Northern Belgium. Ph.D. thesis Free University Amsterdam: 190 pp.Google Scholar
Van den Berg, M.W. 1996. Fluvial sequences of the Maas: a 10 Ma record of neotectonics and climatic change at various time-scales. Ph.D. thesis Wageningen Agricultural University: 181 pp.Google Scholar
Van Staalduinen, C.J., 1979. Toelichting bij de geologische kaart van Nederland 1: 50.000, blad Rotterdam West (37W). Rijks Geologische Dienst (Haarlem): 140 pp.Google Scholar
Vriend, S.P., Van Gaans, P.F.M., Middelburg, J. & Nijs, A., 1988. The application of fuzzy c-means cluster analysis and non-linear mapping to geochemical datasets: examples from Portugal. Applied Geochemistry 3: 213224.CrossRefGoogle Scholar
Weijers, J.P., 1995. Standaard boor beschrijvingsmethode. Internal Report Rijks Geologische Dienst (Haarlem) GB2463: 76 pp.Google Scholar
Zagwijn, W.H. & Van Staalduinen, C.J., 1975. Toelichting bij geologische overzichtskaarten van Nederland. Geological Survey of the Netherlands (Haarlem): 134 pp.Google Scholar