Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T07:12:35.381Z Has data issue: false hasContentIssue false

Sea-surface temperatures and palaeoenvironments of dolichosaurs and early mosasaurs

Published online by Cambridge University Press:  01 April 2016

L.L. Jacobs*
Affiliation:
Department of Geological Sciences, Southern Methodist University, Dallas, Texas 75275, USA
M.J. Polcyn
Affiliation:
Department of Geological Sciences, Southern Methodist University, Dallas, Texas 75275, USA
L.H. Taylor
Affiliation:
Department of Earth Sciences, Denver Museum of Nature and Science, 2001 Colorado Boulevard, Denver, Colorado 80205-5798, USA
K. Ferguson
Affiliation:
Department of Geological Sciences, Southern Methodist University, Dallas, Texas 75275, USA
*
* Corresponding author. Email:[email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The north-central Texas Cretaceous section and its contained fossils, as compared to sections at ‘Ein Yabrud in the eastern Mediterranean region, demonstrate that dolichosaurs and primitive mosasaurs inhabited marine environments at least from the intertidal zone to <100 m in depth. The small body size of dolichosaurs and primitive mosasaurs, and the association of Haasiasaurus with marine snakes at ‘Ein Yabrud, suggest similar temperature requirements to modern sea snakes and marine iguanas (Amblyrhynchus cristatus), specifically sea-surface temperatures between approximately 20° and 30° С The Cenomanian and Turonian stages are characterised by widespread shallow seas with relatively high sea-surface temperatures extending to at least 45° N and 65° S latitude. The distribution of dolichosaurs, mosasaurs and snakes during this interval contradicts palaeoclimate models that predict high (>30° C) equatorial sea-surface temperatures and a steep latitudinal temperature gradient in the Northern Hemisphere.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2005

References

Antunes, M.T., 1964. O Neocretácico e o Cenozoico do litoral de Angola. Junta de Investigações do Ultramar (Lisboa), 257 pp.Google Scholar
Averianov, A.O., 2001. The first find of a dolichosaur (Squamata, Dolichosauridae) in Central Asia. Paleontological Journal 35: 525–527.Google Scholar
Bardet, N., Pereda Suberbiola, X. & Jalil, N.-E., 2003. A new mosasauroid (Squamata) from the Late Cretaceous (Turonian) of Morocco. Comptes Rendus Palevol 2: 607–616.Google Scholar
Bell, B.A., Murry, P.A. & Osten, L.W., 1982. Coniasaurus Owen, 1850 from North America. Journal of Paleontology 56: 520–524.Google Scholar
Bell, G.L. Jr. & Polcyn, K.J., 2005. Dallasaurus turneri, a new primitive mosasauroid from the Middle Turonian of Texas and comments on the polyphyly of Mosasauridae (Squamata). In: Schulp, A.S. & Jagt, J.W.M. (eds): Proceedings of the First Mosasaur Meeting. Netherlands Journal of Geosciences 84: 174–194.Google Scholar
Bell, G.L. Jr. & VortLoh, J.P., 1998. New records of Turonian mosasauroids from the western United States. In: Martin, J.E., Hogenson, J.W. & Benton, R.C. (eds): Partners preserving our past, planning our future. Dakoterra 5: 15–28.Google Scholar
Bice, K.L., Huber, B.T. & Norris, R.D., 2003. Extreme polar warmth during the Cretaceous greenhouse? Paradox of the late Turonian δ18O record at Deep Sea Drilling Project Site 511. Paleoceanography 18: 1031, doi:10.1029/ 2002PA000848, 3003.Google Scholar
Bice, K.L. & Norris, R.D., 2002. Possible atmospheric C02 extremes of the middle Cretaceous (late Albian-Turonian). Paleoceanography 17: 1070, doi:10.1029/2002PA000778, 2002.Google Scholar
Broin, F. de & Werner, C., 1998. New Late Cretaceous turtles from the Western Desert, Egypt. Annales de Paléontologie 84: 131–214.Google Scholar
Buchy, M.-C., Smith, K.T., Frey, E., Stinnesbeck, W., González González, A.H., Ifrim, C., López-Oliva, J.G. & Porras-Muzquis, H., 2005. Annotated catalogue of marine squamates (Reptilia) from the Upper Cretaceous of northeastern Mexico. In: Schulp, A.S. & Jagt, J.W.M., (Eds): Proceedings of the First Mosasaur Meeting. Netherlands Journal of Geosciences 84: 195–205.Google Scholar
Caldwell, M.W., 1999. Description and phylogenetic relationships of a new species of Coniasaurus Owen, 1850 (Squamata). Journal of Vertebrate Paleontology 19: 438–455.Google Scholar
Caldwell, M.W. & Cooper, J.A., 1999. Redescription, palaeobiogeography and palaeoecology of Coniasaurus crassidens Owen, 1850 (Squamata) from the Lower Chalk (Cretaceous, Cenomanian) of SE England. Zoological Journal of the Linnean Society 127: 423–452.Google Scholar
Carroll, R.L. & DeBraga, M., 1992. Aigialosaurs: mid-Cretaceous varanoid lizards. Journal of Vertebrate Paleontology 12: 66–86.Google Scholar
Chalifa, Y., 1985. Saurorhamphus judeaensis (Salmoniformes: Enchodontidae), a new longirostrine fish from the Cretaceous (Cenomanian) of ‘Ein Yabrud, near Jerusalem. Journal of Vertebrate Paleontology 5: 181–193.Google Scholar
Chalifa, Y., 1989a. Two new species of longirostrine fishes from the early Cenomanian (Late Cretaceous) of Ein Yabrud, Israel, with comments on the phylogeny of the Dercetidae. Journal of Vertebrate Paleontology 9: 324–328.Google Scholar
Chalifa, Y., 1989b. New species of Enchodus (Pisces: Enchodontoidei) from the lower Cenomanian of Ein-Yabrud, Israel. Journal of Paleontology 63: 356–364.Google Scholar
Chalifa, Y., 1989c. Yabrudichthys and Serrilepis, two new genera of enchodontids (Teleostei) from lower Cenomanian beds of ‘Ein-Yabrud, Israel. Israel Journal of Zoology 36: 11–38.Google Scholar
Chalifa, Y. & Tchernov, E., 1982. Pachyamia latimaxillaris, a new genus and species (Actinopterygii: Amiidae) from the Cenomanian of Jerusalem. Journal of Vertebrate Paleontology 2: 269–285.Google Scholar
Dal Sasso, C. & Renesto, S., 1999. Aquatic varanoid reptiles from the Cenomanian (Upper Cretaceous) lithographic limestones of Lebanon. Rivista del Museo civico di Scienze naturali ‘E. Caffi’, Bergamo 20: 63–69.Google Scholar
Dalla Vecchia, P.M. & Venturini, S., 1999. The middle Cenomanian Lagerstätte of al Nammoura (Kesrouāne Caza N. Lebanon). Rivista del Museo civico di Scienze naturali ‘E. Caffi’, Bergamo 20: 75–77.Google Scholar
Dawson, W.R., Bartholomew, G.A. & Bennett, A.F., 1977. A reappraisal of the aquatic specializations of the Galapagos marine iguana (Amblyrhynchus cristatus). Evolution 31: 891–897.Google Scholar
Diedrich, C., 1997. Ein Dentale von Coniasaurus crassidens Owen (Varanoidea) aus dem Ober-Cenoman von Halle/Westf. (NW-Deutschland). Geologie und Paläontologie in Westfalen 47: 43–51.Google Scholar
Diedrich, C., 1999. Erster Nachweiss von Dolichosaurus longicollis Owen (Varanoidea) aus dem Ober-Cenoman von Halle/Westf. (NW-Deutschland). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1999/6: 372–384.Google Scholar
Dunham, R.J., 1962. Classification of carbonate rocks according to depositional texture. In: Ham, W.E. (ed.): Classification of carbonate rocks. American Association of Petroleum Geologists Memoir 1: 108–121.Google Scholar
Dunson, W.A., 1975a. Adaptations of sea snakes. In: Dunson, W.A. (ed.): The biology of sea snakes. University Park Press (Baltimore, Maryland): 3–19.Google Scholar
Dunson, W.A., 1975b. Sea snakes and the sea level canal controversy, In: Dunson, W.A. (Ed.): The biology of sea snakes. University Park Press (Baltimore, Maryland): 517–524.Google Scholar
Dunson, W.A. & Ehlert, G.W., 1971. Effects of temperature, salinity, and surface water flow on distribution of the sea snake Pelamis. Limnology and Oceanography 16: 845–853.Google Scholar
Elder, W.P. & Kirkland, J.I., 1994. Cretaceous paleogeography of the southern western interior region. In: Caputo, M.V., Peterson, J.A. & Franczyk, K.J. (eds): Mesozoic systems of the Rocky Mountain Region, USA. Rocky Mountain Section SEPM (Denver): 415–440.Google Scholar
Embry, A.F. & Klovan, J.V., 1971. A late Devonian reef tract on northeastern Banks Island, Northwest Territories, Canada. Petroleum Geology Bulletin 19: 730–781.Google Scholar
Folk, R.L., 1962. Spectral subdivision of limestone types. In: Ham, W.E. (ed.): Classification of carbonate rocks. American Association of Petroleum Geologists Memoir, 1: 62–84.Google Scholar
Gayet, M., 1980. Recherches sur l’ichthyofaune cénomanienne de Monts de Judée: les ‘Acanthopterygiens’. Annales de Paléontologie (Vertébrés) 66: 75–128.Google Scholar
Grande, L. & Bemis, W.E., 1998. A comprehensive phylogenetic study of amiid fishes (Amiidae) based on comparative skeletal anatomy. An empirical search for interconnected patterns of natural history. Society of Vertebrate Paleontology Memoir 4: 1–690.Google Scholar
Haas, G., 1978a. A Cretaceous pleurodire turtle from the surroundings of Jerusalem. Israel Journal of Zoology 27: 20–33.Google Scholar
Haas, G., 1978b. A new turtle of the genus Podocnemis from the lower Cenomanian of ‘Ein Yabrud. Israel Journal of Zoology 27: 169–175.Google Scholar
Haas, G., 1979. On a new snakelike reptile from the lower Cenomanian of ‘Ein Yabrud, near Jerusalem. Bulletin du Museum national d’Histoire naturelle (4)1: 51–64.Google Scholar
Haber, A. & Polcyn, M.J., 2005. A new marine varanoid from the Cenomanian of the Middle East. In: Schulp, A.S. & Jagt, J.W.M., (eds): Proceedings of the First Mosasaur Meeting. Netherlands Journal of Geosciences 84: 247–255.Google Scholar
Hancock, J.M. & Walaszczyk, I., 2004. Mid-Turonian to Coniacian changes of sea level around Dallas, Texas. Cretaceous Research 25: 459–471.Google Scholar
Haq, B.U., Hardenbol, J. & Vail, P.P., 1988. Mesozoic and Cenozoic chrono- stratigraphy and cycles of sea-level change. Society of Economic Paleontologists and Mineralogists, Special Publication 42: 71–108.Google Scholar
Hay, W.W., DeConto, P.M., Wold, C.M., Wilson, K.M., Voigt, S., Schulz, M., Wold, A.R., Dullo, W.-C., Ronov, A.B., Balukhovsky, A.N. & Söding, E., 1999. Alternative global Cretaceous paleogeography. In: Barrera, E. & Johnson, C.C. (eds): Evolution of the Cretaceous Ocean-Climate System. Geological Society of America, Special Paper 332: 1–47.Google Scholar
Henderson, R.A., 2004. A Mid-Cretaceous association of shell beds and organicrich shale: bivalve exploitation of a nutrient-rich, anoxic sea-floor environment. Palaios 19: 156–169.Google Scholar
Jacobs, L.L., Ferguson, K., Polcyn, M.J. & Rennison, C., 2005. Cretaceous δ18O stratigraphy and the age of dolichosaurs and early mosasaurs. In: Schulp, A.S. & Jagt, J.W.M., (eds): Proceedings of the First Mosasaur Meeting. Netherlands Journal of Geosciences 84: 257–268.Google Scholar
Kennedy, W.J. & Cobban, W.A., 1990. Cenomanian ammonite faunas from the Woodbine Formation and lower part of the Eagle Ford Group, Texas. Palaeontology 33: 75–154.Google Scholar
Lewy, Z., 1990. Transgressions, regressions and relative sea level changes on the Cretaceous shelf of Israel and adjacent countries. A critical evaluation of Cretaceous global sea level correlations. Paleoceanography 5: 619–637.Google Scholar
Moody, R.T., 1997. The paleogeography of marine and coastal turtles of the North Atlantic and trans-Sahara regions. In: Callaway, J.M. & Nicholls, E.L. (eds): Ancient marine reptiles. Academic Press (San Diego): 259–278.Google Scholar
Páramo, M.E., 1994. Posición sistemática de un reptil marino con base en los restos fosiles encontrados en capas del Cretácico superior en Yaguara (Huila). Revista de la Academia Colombiana de Ciencias exactas, fisicas y naturales 19: 63–80.Google Scholar
Noms, P.D., Bice, K.L., Magno, E.A. & Wilson, P.A., 2002. Jiggling the tropical thermostat in the Cretaceous hothouse. Geology 30: 299–302.Google Scholar
Polcyn, M.J. & Bell, G.L., 2005. Russellosaurus coheni n. gen., n. sp., a 92 million-year-old mosasaur from Texas (USA), and the definition of the parafamily Russellosaurina. In: Schulp, A.S. & Jagt, J.W.M., (eds): Proceedings of the First Mosasaur Meeting. Netherlands Journal of Geosciences 84: 321–333.Google Scholar
Polcyn, M.J., Jacobs, L.L. & Haber, A., 2005. A morphological model and CT assessment of the skull of Pachyrhachis problematicus (Squamata: Serpentes): a 98 million-year-old snake with legs from the Middle East. Palaeontologica Electronica; http://palaeo-electronica.org/2005_1.Google Scholar
Polcyn, M.J., Tchernov, E. & Jacobs, L.L., 1999. The Cretaceous biogeography of the eastern Mediterranean with a description of a new basal mosasauroid from ‘Ein Yabrud, Israel. In: Tomida, Y., Rich, T.H. & Vickers-Rich, P. (eds): Proceedings of the Second Gondwanan Dinosaur Symposium. National Science Museum Tokyo, Monographs 15: 259–290.Google Scholar
Polcyn, M.J., Tchernov, E. & Jacobs, L.L., 2003. Haasiasaurus gen. nov., a new generic name for the basal mosasauroid Haasia Polcyn et al., 1999. Journal of Vertebrate Paleontology 23: 476.Google Scholar
Rage, J.-C., 1989. Le plus ancien lézard varanoïde de France. Bulletin de la Société d’Étude scientifiques d’Anjou 13: 19–26.Google Scholar
Reid, W.T., 1952. Clastic limestone in the upper Eagle Ford Shale, Dallas County, Texas. Field and Laboratory 20: 111–122.Google Scholar
Sageman, B.B. & Arthur, M.A., 1994. Early Turonian paleogeographic/paleobathymetric map, Western Interior, U.S. In: Caputo, M.V., Peterson, J.A. & Franczyk, K.J. (eds): Mesozoic systems of the Rocky Mountain Region, USA. Rocky Mountain Section SEPM (Denver): 457–469.Google Scholar
Shuler, E.W., 1918. The geology of Dallas County. University of Texas Bulletin 1818: 1–54.Google Scholar
Tchernov, E., Rieppel, O., Zaher, H., Polcyn, M.J. & Jacobs, L.L., 2000. A fossil snake with limbs. Science 287: 2010–2012.Google Scholar
Von Loh, J.P. & Bell, G.L. Jr., 1998. Fossil reptiles from the Late Cretaceous Greenhorn Formation (Late Cenomanian-Middle Turonian) of the Black Hills region, South Dakota. In: Martin, J.E., Hogenson, J.W. & Benton, R.C. (eds): Partners preserving our past, planning our future. Dakoterra 5: 29–38.Google Scholar
White, F.N., 1973. Temperature and the Galapagos marine iguana: insights into reptilian thermoregulation. Comparative Biochemistry and Physiology 45 A: 503–513.Google Scholar
Wikelski, M., Carrillo, V. & Trillmich, F., 1997. Energy limits to body size in a grazing reptile, the Galapagos marine iguana. Ecology 78: 2204–2217.Google Scholar
Wikelski, M. & Wrege, P.H., 2000. Niche expansion, body size, and survival in Galápagos marine iguanas. Oecologia 124: 107–115.Google Scholar