Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T08:42:06.024Z Has data issue: false hasContentIssue false

Results of Analysis of Digital Elevation Models Used Site Selection for Paleoseismological Investigations at the Rurrand Fault

Published online by Cambridge University Press:  01 April 2016

K.G. Hinzen
Affiliation:
Universität zu Köln, Department of Earthquake Geology, Vinzenz-Pallotti-Str. 26, D-51429 Bergisch Gladbach; e-mail: [email protected]
K. Reamer
Affiliation:
Universität zu Köln, Department of Earthquake Geology, Vinzenz-Pallotti-Str. 26, D-51429 Bergisch Gladbach; e-mail: [email protected]
T. Rose
Affiliation:
Universität zu Köln, Department of Earthquake Geology, Vinzenz-Pallotti-Str. 26, D-51429 Bergisch Gladbach; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Topographic and morphologic models based on detailed Digital Elevation Models (DEM) of the Rur Graben, in particular a 33 km section of the Rurrand Fault, proved to be essential in preliminary investigations for the site selection of a trench for detailed paleoseismological investigations. The entire DEM in the 33 km Jülich-Düren area displayed as a color-shaded terrain map clearly illustrates the main features of the eastern border fault of the Rur Graben. As investigations concentrated on the 8x6 km Stetternich-Hambach section of the Rurrand fault, the use of contoured topographic, gray-shaded terrain and terrain slope maps helped delineate the main features of the surface fault expression. On the basis of topographic profiles constructed from the DEM, no fault scarp could be identified; however, the detailed surveying results from two geophysical profiles correlated well with the topographic data.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2001

References

Brondeel, M., Meghraoui, M. & Camelbeek, T., 1997. Detailed geomorphic analysis of the Bree active fault scarp. Ardk. Mededel., 84th Journées Luxembourgeoises de Géodynamique (Muns-bach/Luxembourg).Google Scholar
Camelbeek, T. & Meghraoui, M., 1996. Large earthquakes in Northern Europe more likely than once thought. Eos, Transactions, American Geophysical Union 77, N° 42: 405409.CrossRefGoogle Scholar
Camelbeeck, T. & Meghraoui, M., 1998. Geological and geophysical evidence for large paleoearthquakes with surface faulting in the Roer Graben. Geophysical Journal International 132: 347362.Google Scholar
Camelbeek, T. & Van Eck, X., 1994. The Roer Valley graben earthquake of 13 April 1992 and its seismotectonic setting, Terra Nova, 6:291.Google Scholar
Cressie, N.A.C., 1991 Statistics for spatial data. John Wiley and Sons, Inc., New York, 900 pp.Google Scholar
Davenport, C.A., Lap, J.M.J., Maurenbrecher, RM. & Proce, D.G., 1994. Liquefaction potential and dewatering injection structures at Herkenbosch: field investigations of the effects of the 1992 Roermond earthquake, the Netherlands. Geologie en Mijnbouw 73: 365374.Google Scholar
Geluk, M.C., Duin, E.J.Th., Dusar, M., Rijkers, R.H.B., van den Berg, M.W. & van Roijen, P., 1994. Stratigraphy and tectonics of the Roer Valley Graben. Geologie an Mijnbouw 73: 129141.Google Scholar
Landesvermessungsamt Nordrhein-Westfalen, 1972. Deutsche Grundkarte 1:5000, sections Stetternich, Neulich, Daubenrath, Hambach, (Bonn).Google Scholar
Landesvermessungsamt Nordrhein-Westfalen, 1998–1999. Digital elevation model of North Rhine Westphalia DGM 5, various sections, (Bonn).Google Scholar
Lehmann, K., Pelzing, R. & Klostermann, J., 2000a. Paleoseismological Investigations at the Rurrand Fault, Lower Rhine Embayment. Geologie en Mijnbouw, 80, 139154.Google Scholar
Lehmann, K., Klostermann, J., Pelzing, R., & Hinzen, K.-G.., 2000b. Paleoseismological investigations at the Rurrand fault, FRG. Proceedings Workshop, HAN 2000, Han-su-Lesse: 9396.Google Scholar
McCalpin, P., 1996. Paleoseismology. Academic Press (London): 583 pp.Google Scholar
Nieuwenhuis, J.D., 1994. Liquefaction and the 1992 Roermond earthquake, the Netherlands. Geologie en Mijnbouw 73: 357364.Google Scholar
NOAA, 1999. Global Relief CD-Rom. United States Department of Commerce (Washington, D.C.)Google Scholar
Prüfert, J. and Thiermann, R., 1990. Geologische Karte von Nordrhein-Westfalen 1:100,000.’ Landesamt, Nordrhein Westfalen (Krefeld, Germany).Google Scholar
U.S. Geological Survey, 1993. Digital elevation models, data user guide 5 (Reston, Virginia): 50 pp.Google Scholar
Ziegler, P.A., 1982. Geological atlas of Western and Central Europe. Elsevier Science Publishers (Amsterdam): 155 pp.Google Scholar