Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T18:29:44.391Z Has data issue: false hasContentIssue false

A rapid clay-mineral change in the earliest Priabonian of the North Sea Basin?

Published online by Cambridge University Press:  01 April 2016

R. Saeys
Affiliation:
K.U. Leuven, Historical Geology, Redingenstraat 16, B-3000 Leuven, Belgium
A. Verheyen
Affiliation:
K.U. Leuven, Historical Geology, Redingenstraat 16, B-3000 Leuven, Belgium
N. Vandenberghe*
Affiliation:
K.U. Leuven, Historical Geology, Redingenstraat 16, B-3000 Leuven, Belgium
*
1corresponding author:[email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the Eocene to Oligocene transitional strata in Belgium, clay mineral associations vary in response to the climatic evolution and to tectonic pulses. Decreasing smectite to illite ratios and the systematic occurrence of illite-smectite irregular interlayers are consequences of a cooling climate. A marked increase in kaolinite content occurs just after a major unconformity formed at the Bartonian/Priabonian boundary and consequently is interpreted as resulting from the breakdown of uplifted saprolites.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2004

References

Blondeau, A., Cavelier, C., Feugueur, L. & Pomerol, C., 1965. Stratigraphie du Paléogène du Bassin de Paris en relation avec les bassins avoisinants. Bulletin Société Géologique de France, 7 ième série 7: 200–221.Google Scholar
Bohaty, M. S. & Zachos, J.C., 2003. Significant Southern Ocean warming event in the late middle Eocene. Geology 31: 1017–1020.CrossRefGoogle Scholar
Chamley, H., 1989. Clay Sedimentology. Springer-Verlag (Berlin): 623pp.CrossRefGoogle Scholar
De Man, E., Ivany, L. & Vandenberghe, N., (this volume). Stable oxygen isotope record of the Eocene-Oligocene transition in NE Belgium. Netherlands Journal of Geosciences / Geologie en Mijnbouw.Google Scholar
Doré, A.G., Lundin, E.R., Jensen, L.N., Birkeland, Ø. Eliasen, Ø. & Fichler, C. 1998. Principal tectonic events in the evolution of the northwest European Atlantic margin. In: Fleet, A.J. & Boldy, S.A.R. (eds): Petroleum Geology of Northwest Europe. Geological Society London: 41–61.Google Scholar
Faleide, J.I., Kyrkjebø, R., Kjennerud, T., Gabrielsen, R.H., Jordt, H., Fanavoll, S. & Bjerke, M.D., 2002. Tectonic impact on sedimentary processes during Cenozoic evolution of the northern North Sea and surrounding areas. In: Doré, A.G., Cartwright, J.A., Stoker, M.S., Turner, J.P. & White, N. (eds): Exhumation of the North Atlantic Margin: Timing, Mechanisms and Implications for Petroleum Exploration. Geological Society, London, Special Publication 196: 235–269.Google Scholar
Huuse, M., 2002. Cenozoic uplift and denudation of southern Norway: insights from the North Sea Basin. In: Doré, A.G.1, Cartwright, J.A., Stoker, M.S., Turner, J.P. & White, N. (eds): Exhumation of the North Atlantic Margin: Timing, Mechanisms and Implications for Petroleum Exploration. Geological Society London, Special Publication 196: 209–233.Google Scholar
Laenen, B., 1997. The Geochemical Signature of Relative Sea-level Cycles Recognized in the Boom Clay. Doctoral thesis K.U. Leuven (3 volumes): 523 pp.Google Scholar
Laenen, B., 1998. The geochemical signature of relative sea-level cycles recognized in the Boom Clay. Aardkundige Mededelingen (Leuven University Press) 9: 61–82.Google Scholar
Laga, P., Louwye, S. & Geets, S., 2001. Paleogene and Neogene lithostratigraphic units (Belgium). Geologica Belgica (Brussel) 4: 135–152.Google Scholar
Nielsen, O.B., 1988. The clay mineralogy in the eastern and southeastern parts of the Tertiary North Sea Basin. In: Vinken, R. (ed): The Northwest European Tertiary Basin. Geologisches Jahrbuch A 100: 141–143.Google Scholar
Pearson, M.J., 1990. Clay mineral distribution and provenance in Mesozoic and Tertiary mudrocks of the Moray Firth and northern North Sea. Clay Minerals 25: 519–541.CrossRefGoogle Scholar
Pearson, M.J. & Small, J.S., 1988. Illite-smectite diagenesis and paleotemperature in northern North Sea Quaternary to Mesozoic shale sequence. Clay Minerals 23: 109–132.CrossRefGoogle Scholar
Pomerol, C., 1975. Stratigraphie et paléogéographie. Ere Cénozoique (Tertiaire et Quaternaire). Doin: 269 pp.Google Scholar
Quinif, Y., Mercier, M., Roche, E. & Dupuis, C., 1983. Essai de reconstitution géodynamique du Paléogène du bassin belge à partir des données de la minéralogie des argiles, de la géochimie des radioéléments (U, Th, K20) et de la palynologie. Comptes Rendus de l'Académie des Sciences (Paris) II 296: 1621–1624.Google Scholar
Robert, C., 1980. Climats et courants Cénozoïques dans l’Atlantique Sud d’après l’étude des minéraux argileux (legs 3,39 et 40 DSDP). Oceanologica Acta 3 (3): 369–376.Google Scholar
Saeys, R., 2003. De ‘kaoliniet-smectiet’-sprong in de Eoceen-Oligoceen overgangslagen van het zuidelijk Tertiair Noordzeebekken. Licentiaatsverhandeling K.U. Leuven: 84 pp.Google Scholar
Thorez, J., 1975. Phyllosilicates and clay minerals. A laboratory handbook for their X-ray diffraction analysis. G. Lelőtte (Dison): 579 pp.Google Scholar
Thorez, J., 1976. Practical identification of clay minerals. G. Lelőtte (Dison): 90 pp.Google Scholar
Vandenberghe, N. & Laenen, B., 1999. The impact of relative sea-level on the clay mineralogy of the Boom Clay Formation (Rupelian-Belgium). Conference of the European Clay Groups Association, Euroclay 1999 (Krakow), Abstracts: 142.Google Scholar
Vandenberghe, N., Laga, P., Steurbaut, E., Hardenbol, J. & Vail, P.R., 1998. Tertiary sequence stratigraphy at the southern border of the North Sea Basin in Belgium. In: de Graciansky, P.-C., Hardenbol, J., Jacquin, T. & Vail, P.R. (eds): Mesozoic and Cenozoic Sequence Stratigraphy of European Basins. Society for Sedimentary Geology (SEPM) Special Publication 60: 261–288.Google Scholar
Vandenberghe, N., Herman, J. & Steurbaut, E., 2002. Detailed Analysis of the Rupelian Ru-1 Transgressive Surface in the Type Area (Belgium). In: Gürs, K. (ed): Northern European Cenozoic Stratigraphy. Proceedings of the 8th Biannual Meeting of the Regional Committees RCNNS/RCNPS (northern Paleogene and Neogene Stratigraphy). Landesamt für Natur und Umwelt des Landes Schleswig-Holstein (Flintbek): 67–81.Google Scholar
Vandenberghe, N., Brinkhuis, H. & Steurbaut, E., 2003. The Eocene/Oligocene Boundary in the North Sea Area: A sequence Stratigraphic Approach. In: Prothero, D.R., Ivany, L.C. & Nesbitt, E.A. (eds): From Greenhouse to Icehouse. The Marine Eocene-Oligocene Transition. Columbia University Press: 419–437.Google Scholar
Vandenberghe, N., Van Simaeys, S. & Steurbaut, E., this volume. Stratigraphie architecture of the Late Cretaceous and Cenozoic at the southern border of die North-Sea Basin in Belgium. Netherlands Journal of Geosciences/Geologie en Mijnbouw.Google Scholar
Verheyen, A., 2003. Geofysische karakterisatie en correlatie van de Eoceen-Oligoceen overgangslagen in België. Licentiaatsverhandeling K. U. Leuven: 119 pp.Google Scholar
Vinken, R. (ed), 1988. The Northwest European Tertiary Basin, Results of the International Geological Correlation programme Project No 124. Geologisches Jahrbuch, A 100: 508 pp.Google Scholar
Yans, J., Quesnel, F. & Dupuis, C., 2003. Meso-cenozoic paleoweathering of the Haute-Lesse area (Ardenne-Belgium). In: Quesnel, F. (coord.): Paleoweathering and Paleosurfaces in the Ardenne-Eifel region. Geologie de la France No1. Field trip guides: 3–10.Google Scholar
Zachos, J.C., Stott, L.D. & Lohmann, K.C., 1994. Evolution of early Cenozoic marine temperatures. Paleoceanography 99: 353–387.Google Scholar