Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T05:37:09.088Z Has data issue: false hasContentIssue false

Radiometric fingerprinting of fluvial sediments in theRhine-Meuse delta, the Netherlands – a feasibility test

Published online by Cambridge University Press:  19 June 2017

K. Mebinck
Affiliation:
Dept. Physical Geography, Universiteit Utrecht, P.O. Box 80115, 3508 TC Utrecht, the Netherlands
H. Middelkoop*
Affiliation:
Dept. Physical Geography, Universiteit Utrecht, P.O. Box 80115, 3508 TC Utrecht, the Netherlands
N. van Diepen
Affiliation:
Dept. Physical Geography, Universiteit Utrecht, P.O. Box 80115, 3508 TC Utrecht, the Netherlands
E.R van der Graaf
Affiliation:
Nuclear Geophysics Division – Kernfysisch Versneller Instituut, University of Groningen, the Netherlands
R.J. de Meijer
Affiliation:
Nuclear Geophysics Division – Kernfysisch Versneller Instituut, University of Groningen, the Netherlands
*
Corresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The deposits of the Rhine and the Meuse in the Netherlands alternate intheir delta in a complex way. This paper discusses a method to distinguishthe deposits of the Rhine and the Meuse based on the differences in naturalradioactivity of 40K, 238U and 232Th, andthe effect of the age of the deposits on the radiometrie signal. In total,six channel belts of the Rhine and the Meuse were selected for sampling withan approximate age of about 2000, 4000 and 6000 14C years B.P. Ofeach channel belt 5 samples of different lithology were taken: clay (C),clay leads (CL), sandy clay loam (sCL), sandy loam (sL) and sand (S). Allsamples were analysed on organic matter content, grain size, geochemistryand radioactivity of the radionuclides 40K, 238U and 232Th. The radioactivity of the sample is mainly influenced bythe grain size of the sample. Therefore, this signal is divided in partialradioactivities for three grain size fractions – clay (<16 μm), silt (16– 63 μm) and sand (>63 μm) – to make the radiometric fingerprint, whichis independent of the grain size of the sample. These fingerprints show adifference between the Rhine and the Meuse. Additionally, the radiometricsignal strongly depends on the age of the deposits. Remarkably, this trendwith age is opposite in the deposits of the Rhine and the Meuse and oppositein the clay and silt fraction. Because the radiometrie differences betweenthe samples seem more distinct than the geochemical differences, theradiometric fingerprints are more suitable to distinguish the deposits ofthe Rhine and the Meuse. A method is presented to derive the contribution ofthe Rhine and the Meuse in a deposit of unknown origin, assuming that theradiometric fingerprints found are consistent and valid for the Rhine-Meusedelta. To distinguish the deposits of the Rhine and the Meuse, both thegrain size composition and the age of the deposits have to be known.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2007

References

Berendsen, H.J.A., 1996. Fysisch-geografisch onderzoek; thema’s en methoden. Koninklijke Van Gorcum, (Assen): 214 pp.Google Scholar
Berendsen, H.J.A. & Stouthamer, E., 2001. Palaeogeographic development of the Rhine-Meuse delta, the Netherlands. Koninklijke Van Gorcum (Assen): 268 pp.Google Scholar
Cohen, K.M., 2003. Differential subsidence within a coastal prism; Late Glacial – Holocene tectonics in the Rhine-Meuse delta, the Netherlands. PhD Thesis. Netherlands Geographical Studies 316: 176 pp.Google Scholar
Collins, A.L., Walling, D.E. & Leeks, G.J.L., 1997. Fingerprinting the origin of fluvial suspended sediment in larger river basins: combining assessment of spatial provenance and source type. Geografiska Annaler (A) 79: 239254.Google Scholar
Collins, A.L. & Walling, D.E., 2002. Selecting fingerprint properties for discriminating potential suspended sediment sources in river basins. Journal of Hydrology 261: 218244.10.1016/S0022-1694(02)00011-2Google Scholar
Collins, A.L. & Walling, D.E., 2004. Documenting catchment suspended sediment sources: problems, approaches and prospects. Progress in Physical Geography 28, 159196.10.1191/0309133304pp409raGoogle Scholar
De Meijer, R.J., 1998. Heavy minerals: from ‘Edelstein’ to Einstein. Journal of Geochemical Exploration 62: 81103.10.1016/S0375-6742(97)00073-3Google Scholar
De Meijer, R.J. & Donoghue, J.F., 1995. Radiometrie fingerprinting of sediments on the Dutch, German and Danish coasts. Quaternary International 26: 4347.10.1016/1040-6182(94)00044-6Google Scholar
De Meijer, R J., Lesscher, H.M.E., Schuiling, R.D. & Elburg, M.E., 1990. Estimate of the heavy mineral content in sand and its provenance by radiometrie methods. Nuclear Geophysics 4: 455460.Google Scholar
Garrad, P.N. & Hey, R.D., 1989. Sources of suspended and deposited sediment in a broadland river. Earth Surface Processes and Landforms 14: 4162.10.1002/esp.3290140105Google Scholar
Gingele, F.X. & De Deckker, P., 2003. Fingerprinting Australia’s rivers using clays and the application for the marine record of rapid climate change. In: Roach, I.C. (ed.): Advances in regolith, CRC LEME: 140143.Google Scholar
Hakstege, A.L., Kroonenberg, S.B. & Van Wijck, H., 1993. Geochemistry of Holocene clays of the Rhine and Meuse in the central-eastern Netherlands, Geologie en Mijnbouw 71: 301315.Google Scholar
He, Q. & Walling, D.E., 1996. Interpreting particle size effects in the adsorption of 137Cs and unsupported 210Pb by mineral soils and sediment. Journal of Environmental Radioactivity 30: 117137.10.1016/0265-931X(96)89275-7Google Scholar
Thome, L. & Nickless, G., 1981. The relation between heavy metals and particle size fractions within the Severn estuary (UK) inter-tidal sediments. The Science of the Total Environment 19: 207213.10.1016/0048-9697(81)90017-6Google Scholar
Johnson, A.G. & Kelley, J.T., 1984. Temporal, spatial and textural variations in the mineralogy of the Mississippi River suspended sediment. Journal of Sedimentary Petrology 54: 6772.Google Scholar
Lewin, J. & Wolf enden, P.J., 1978. The assessment of sediment sources: a field experiment. Earth Surface Processes and Landforms 3: 171178.10.1002/esp.3290030205Google Scholar
Loughran, R.J., Campbell, B.L. & Elliott, G.I., 1982. The identification and quantification of sediment sources using 137Cs. In: Walling, D.E. (ed): Recent developments in the explanation and prediction of erosion and sediment yield, IAHS publication no. 137 IAHS Press (Wallingford): 361369.Google Scholar
Middelkoop, H., 2000. Heavy-metal pollution of the river Rhine and Meuse flood-plains in the Netherlands. Netherlands Journal of Geosciences 79: 411428.10.1017/S0016774600021910Google Scholar
Motha, J.A., Wallbrink, P.J., Hairsine, P.B. & Grayson, R.B., 2004. Unsealed roads as suspended sediment sources in an agricultural catchment in southeastern Australia. Journal of Hydrology 286: 118.10.1016/j.jhydrol.2003.07.006Google Scholar
Oldfield, F., Rummery, T.A., Thompson, R. & Walling, D.E., 1979. Identification of suspended sediment sources by means of magnetic measurements: some preliminary results. Water Resources Research 15: 211218.10.1029/WR015i002p00211Google Scholar
NEN, , 2000. Bepaling van de activiteit van gammastraling uitzendende nucliden in een telmonster met behulp van halfgeleider-gammaspectrometrie, Nederlandse norm, NEN5623Google Scholar
Peart, M.R. & Walling, D.E., 1986. Fingerprinting sediment source: the example of a drainage basin in Devon, UK. In: Hadley, R.F. (ed): Drainage basin sediment delivery, IAHS publication no. 159. IAHS Press (Wallingford): 4155.Google Scholar
Phillips, J.D., 1992. Delivery of upper-basin sediment to the Lower Neuse River, North Carolina, USA. Earth Surface Processes and Landforms 17: 699709.10.1002/esp.3290170706Google Scholar
Porto, P., Walling, D.E., Tamburino, V. & Callegari, G., 2003. Relating ceasium-137 and soil loss from cultivated land. Catena 53: 303326.10.1016/S0341-8162(03)00084-5Google Scholar
Schoeneberger, P.J., Wysocki, D.A., Benham, E.C. & Broderson, W.D. (eds), 2002. Field book for describing and sampling soils, Version 2. Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE.Google Scholar
Slattery, M.C., Walden, J. & Burt, T.P., 2000. Use of mineral magnetic measurements to fingerprint suspended sediment sources: results from a linear mixing model. In: Foster, I.D.L. (ed.): Tracers in Geomorphology. John Wiley and Sons Ltd. (Chichester): 309322.Google Scholar
Stouthamer, E., 2001. Holocene avulsions in the Rhine-Meuse delta, the Netherlands. PhD Thesis. Netherlands Geographical Studies 283: 211 pp.Google Scholar
Tebbens, I.A., 1999. Late Quaternary evolution of the Meuse fluvial system and its sediment composition; A reconstruction based on bulk sample geochemistry and forward modelling. PhD Thesis, Wageningen University: 157 pp.Google Scholar
Van Wijngaarden, M., Van den Berg, G.A. & Fioole, A., 2000. Bodem in beeld. RIZA report 2000.005. RIZA (Dordrecht): 28 pp.Google Scholar
Van Wijngaarden, M., Venema, L.B., De Meijer, R.J., Zwolsman, J.J.G., Van Os, B. & Gieske, J.M.J., 2002a. Radiometrie sand-mud characterisation in the Rhine-Meuse estuary; Part A. Fingerprinting. Geomorphology 43: 87101.10.1016/S0169-555X(01)00124-6Google Scholar
Van Wijngaarden, M., Venema, L.B. & De Meijer, R.J., 2002b. Radiometrie sand-mud characterisation in the Rhine-Meuse estuary; Part B. In situ mapping. Geomorphology 43: 103116.10.1016/S0169-555X(01)00125-8Google Scholar
Venema, L.B., Ten Have, R., De Meijer, R.J., Van Os, B., Gieske, J.M.J. & Zwanenbug-Nederlof, H.P., 1998. Radiometrie survey of ‘Hollandsen Diep’ Part I: Feasibility study and radiometrie and geochemical characterization. KVI and TN0-NITG internal report Z-70: 87 pp.Google Scholar
Venema, L.B., Ten Have, R., De Meijer, R.J., Van Os, B., Gieske, J.M.J. & Zwanenbug-Nederlof, H.P., 1999. Radiometrie survey of ‘Hollandsen Diep’ Part II: Mud-sand mapping. KVI and TN0-NITG internal report Z-78: 65 pp.Google Scholar
Walden, J., Slattery, M.C. & Burt, T.P., 1997. Use of mineral magnetic measurements to fingerprint suspended sediment sources: approaches and techniques for data analysis. Journal of Hydrology 202: 353372.10.1016/S0022-1694(97)00078-4Google Scholar
Walling, D.E. & Woodward, J.C., 1992. Use of radiometrie fingerprints to derive information on suspended sediment sources. In: Bogen, J., Walling, D.E. & Day, T., (eds): Erosion and sediment transport monitoring programmes in River Basins. IAHS Publication 210: 153164.Google Scholar