Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T01:50:23.919Z Has data issue: false hasContentIssue false

Preliminary geologic, geomorphologic and geophysical studies for the paleoseismological analysis of the Amer fault (NE Spain)

Published online by Cambridge University Press:  01 April 2016

J. Fleta
Affiliation:
Institut Cartogràfic de Catalunya, Parc de Montjuïc, 08038 Barcelona, Spain. E-mail: [email protected]
P. Santanach
Affiliation:
Dept. Geodinàmica i Geofisica, Universitat de Barcelona, Zona Universitària de Pedralbes, 08028 Barcelona, Spain
X. Goula
Affiliation:
Institut Cartogràfic de Catalunya, Parc de Montjuïc, 08038 Barcelona, Spain. E-mail: [email protected]
P. Martínez
Affiliation:
Institut Cartogràfic de Catalunya, Parc de Montjuïc, 08038 Barcelona, Spain. E-mail: [email protected]
B. Grellet
Affiliation:
Geo-Ter S.A.R.L. 3, rue Jean Monnet, 34830 Clapiers, France
E. Masana
Affiliation:
Dept. Geodinàmica i Geofisica, Universitat de Barcelona, Zona Universitària de Pedralbes, 08028 Barcelona, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Amer fault is a 30 km long normal fault, which generated the damaging earthquakes of March and May 1427. Triangular facets, wine glass drainage basins, alluvial fans and scarps along the Amer fault mountain front provide evidence of its recent activity. Topographic profiling, electrical logging, tomographic and high-resolution seismic profiling along the northern segment of the Amer fault showed the following: i) no evidence of surface deformation in recent deposits; ii) fault scarps produced by the Amer fault located only on old alluvial fans, probably Pleistocene in age, and iii) Amer fault related deformation reaching upper Quaternary levels, but not the uppermost horizons. The high sedimentation rate (nearly one order of magnitude greater than the fault slip rate) due to the filling of the lake, which resulted from the damming of the Fluvià river by the Bosc de Tosca lava flow (17,000 yr BP), can account for the absence of surface deformation on Holocene sediments.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2001

References

Barnolas, A., Saula, E., Mató, E., Muñoz, J.A. and Escuer, J., 1994. Mapa Geológico de España E 1:50.000 294 Manlleu. 51 pp., ITGE.Google Scholar
Briais, A., Armijo, R., Winter, T., Tapponnier, P. & Herbecq, A., 1990. Morphological evidence for Quaternary normal faulting and seismic hazard in the Eastern Pyrenees. Annales Tectonicae, Vol. IV (1): 1942.Google Scholar
Cros, J., 1986. El Quaternari de la Vail d’en Bas (província de Girona). Tesis de Llicenciatura, Universitat Autònoma de Barcelona, 62 pp.Google Scholar
Estruch, I., 1999. Estudi de les anomalies topogràfiques en relació a l’activitat tectònica recent a la falla d’Amer-Brugent (Vall d’en Bas). Institut Cartográfic de Catalunya, Informes del Servei Geològic de Catalunya, GS123–99, 132p., 5 anexes.Google Scholar
FAUST, 2001. FAUST [on line]: http://faust.ingv.it, 20.04.2001.Google Scholar
Fayas, J.A., & Doménech, J., 1974. Morfología volcánica de Olot y su interés hidrológico. Agua, 85: 2031.Google Scholar
Ferrer, P., Masana, E. & Santanach, P., 1999a. Expresión geomor-fológica de la actividad reciente de la falla de Amer (NE de la Península Ibérica). Acta Geol. Hispánica, 31 (1996), 4: 1724 (Pub. 1999).Google Scholar
Ferrer, P., Masana, E. & Santanach, P., 1999b. Analysis of relevant geologic and géomorphologic data for paleoseismologic trenching across the Brugent fault. Paleosis, Internal report, Institut Cartogràfic de Catalunya, 25 pp.Google Scholar
Fleta, J., & Goula, X., 1998. Paleosis Region IV: Eastern Pyrenees. Internet, http://www.astro.oma.be/PALEOSIS/epyr/index4.htm. Google Scholar
Fleta, J., Goula, X., Grellet, B., Estruch, I., Palomera, R., Martínez, P., Teixidó, T., Masana, E., Ferrer, P. & Santanach, P., 1999. Technical report on the activity for the period March 1998-February 1999. Investigations in the Eastern Pyrenees. Institut Cartogràfic de Catalunya. Paleosis-project (ENV4-CT97–0578) March 1999 report, partner 6, GC.DPT.ICC, 4072.Google Scholar
Giménez, J., Suriñach, E., Goula, X. and Fleta, J., 1996. Recent vertical movements from precise levelling data in the Northeast of Spain. Tectonophysics, Vol. 263 (14): 149162.CrossRefGoogle Scholar
Goula, X., Talaya, J., Tèrmens, A., Colomina, L., Fleta, J., Grellet, B. and Granier, Th., 1996. Avaluadó de la potencialitat sísmica del Pirineu Oriental: Primers résultats de les campanyes GPS PotSis’92 i PotSis’94. Terra, 28: 4148.Google Scholar
Goula, X., Olivera, C., Fleta, J., Grellet, B., Lindo, R., Rivera, L.A.; Cisternas, A. & Carbon, D., 1999. Present and recent stress regime in the eastern part of the Pyrenees. Tectonophysics, 308 (4): 487502.CrossRefGoogle Scholar
Gourgot, S. & Molas, L., 1999. Paleosis GPR survey. Sector of Olot – Spain. Report 99.201 vl.l. Institut Cartogràfic de Catalunya. 41 pp.Google Scholar
Guérin, G., Benhamou, G. & Mallarach, J.M. 1986. Un exemple de fusió parcial en medi continental. El vulcanisme quaternari de Catalunya. Vitrina, 1: 2026.Google Scholar
Guardia, M.P., 1960. Contribution à l’étude des volcans de la province de Gerone et du paléomagnetisme de leurs coulées. Thèse, Université de Paris, 56 pp.Google Scholar
ICC, 1999a. Mapa de sismicitat de Catalunya 1977–1997 Escala 1:400 000. Institut Cartogràfic de Catalunya.Google Scholar
ICC, 1999b. Base de dades altimètrica de Catalunya BD-MET15. Computer file. Institut Cartogràfic de Catalunya.Google Scholar
ICC, 1999c. Prospecció geofísica a la Vall d’en Bas. La Garrotxa. Institut Cartográfic de Catalunya, Informes del Servei Geològic de Catalunya, GA-157/99, 32 pp., 5 annexes.Google Scholar
Lewis, C.J., Vergés, J. & Marzo, M., 2000. High mountains in a zone of extended crust: Insights into the Neogene-Quaternary topographic development of northeastern Iberia. Tectonics, 19 (1): 86102.CrossRefGoogle Scholar
Mallarach, J.M., Pérez, P., & Roure, J.M., 1986. Aportacions al coneixement del clima i la vegetació durant el Quaternari recent en el NE de la península Ibèrica. Vitrina, 1: 4954.Google Scholar
Martínez, P., Teixidó, T., Fleta, J., Goula, X. & Renardy, F., 2000. Geophysical prospection at the Amer-Brugent fault system (Girona, Spain). Procs. II Asamblea Hispanoportuguesa de Geodesia y Geofísica, S03-13, 135136.Google Scholar
Olivera, C., Redondo, E., Riera, A., Lambert, J. & Roca, A., 1999. Problems in assessing focal parameters to earthquake sequences from historical investigation:The 1427 earthquakes in Catalonia. Procs. IX Asamblea Española de Geodesia y Geofísica, SIM2-07, 8 pp.Google Scholar
PALEOSIS, 1999. PALEOSIS [on line] : http://www.astro.oma.be/PALEOSIS/, 4.05.1999.Google Scholar
Saula, E., Picart, J., Mató, E., Llenas, M., Losantos, M., Beràstegui, X. & Agustí, J., 1996. Evolución geodinámica de la fosa del Empordà y las Sierras Transversales. Acta Geol. Hispánica, 29 (1994): 5575.Google Scholar
SGC, 1998. Inventari de pous de Catalunya. Servei Geològic de Catalunya, Computer file.Google Scholar
SYSIGSA, 1999. Projecte Paleosis, Restitució fotogramètrica i malla tridimensional del terreny de 10m. Zones: Sant Privat i Joanetes. Computer file. Institut Cartogràfic de Catalunya.Google Scholar
Talaya, J., Feigl, K., Térmens, A. & Colomina, I., 1999. Practical lessons from analysis of a GPS network designed to detect movements of 1 mm/year in the Eastern Pyrenees. Phys. Chem. Earth (A), Vol. 24 (4): 355359.Google Scholar
Wallace, R.E., 1978. Geometry and rates of change of fault generated range fronts, North-Central Nevada. Jour. Res. U.S. Geol. Surv., 6(5): 637649.Google Scholar
Wells, D.L. & Coppersmith, K.J., 1994. New empirical relationships among magnitude, rupture, length, rupture wide, rupture area and surface displacement. Bull. Seismological Soc. Am., 84 (4): 9741002.Google Scholar