Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-04T22:12:41.987Z Has data issue: false hasContentIssue false

Pedosedimentary evolution of the last interglacial and early glacial sequence in the European loess belt from Belgium to central Russia

Published online by Cambridge University Press:  01 April 2016

Paul Haesaerts*
Affiliation:
Koninklijk Belgisch Instituut voor Natuurwetenschappen, Vautierstraat 29, B-1000 BRUSSEL, Belgium
Hans Mestdagh
Affiliation:
Koninklijk Belgisch Instituut voor Natuurwetenschappen, Vautierstraat 29, B-1000 BRUSSEL, Belgium
*
1Corresponding author
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For more than one century, the textural B-horizon of the last interglacial soil and its cover deposits have been standing out in Europe as an important pedostratigraphic marker. The complexity of this horizon was well illustrated since the seventies, though its pedological and stratigraphic significance remained doubtful. Macro-, meso- and micromorphological data gathered by the authors at various key-sites in Europe and the sequential correlation principle have resulted in a better understanding of the high complexity of the pedosedimentary and stratigraphical evolution of the last interglacial and early glacial loess succession. The present study identifies four megacyclic pedosedimentary intervals that show a general trend towards dry and continental climatic conditions.

A consistent correlation exists between pedosedimentary evolution and vegetation, as recorded in the Grande Pile pollen record. The picture obtained in the present study is similar for both the Western and the Eastern European loess palaeosol successions. The so-called ‘last interglacial soil’, with three major soil-forming processes, belongs to the Eemian and Saint-Germain I (MIS substages 5e and 5c), whereas the humiferous sediments and soils on top are linked to Melisey II, Saint-Germain II and Ognon I (MIS substages 5b and 5a).The overlying loess, colluvial sediments and humiferous soils that end the palaeosol succession belong to the Ognon II and III interstadials; they record the onset of the early Pleniglacial (MIS stage 4) characterized by a significant increase in aeolian sedimentation.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2000

References

Balescu, S., 1988. Apports de la thermoluminescence à la stratigraphie et à la sédimentologie des loess Saaliens du NW de l’Europe. Thèse, Université Libre de Bruxelles, Département des Sciences de la Terre et de l’Environnement: 199 pp.Google Scholar
Becker, U., 1990. Paläomagnetische Untersuchungen am Tönchesberg. In: Schirmer, W. (ed.): Rheingeschichte zischen Mosel und Maas. Deutsche Quartärvereinigung (Hannover): 5759.Google Scholar
Berger, A.L., 1978. Long-term variations of daily insolation and Quaternary climate changes. Journal of Atmospheric Science 35: 23622367.2.0.CO;2>CrossRefGoogle Scholar
Berger, A., 1979. Insolation signature of Quaternary climatic changes. Il Nuovo Cimento 2: 6387.Google Scholar
Boenigk, W., Frechen, M. & Weidenfelder, M., 1994. Die mittelund oberpleistozäne Deckschichtenfolge im Naturschutzgebiet ‘Eiszeitlichen Lößprofil’ in Koblenz-Metternich. Mainzer geowissenschaftliche Mitteilungen 23: 287320.Google Scholar
Conard, N.J., 1992. Tönchesberg and its position in the paleolithic prehistory of Northern Europe. Römisch-Germanisches Zentralmuseum, Forschunginstitut für Vor - und Frühgeschichte, Monographien 20: 176 pp.Google Scholar
Demek, J. & Kukla, J., 1969. Periglazialzone, Löss und Paläolithicum der Tschechoslowakei. Tschechoslowakische Akademie derWissenschaften, Geographisches Institut (Brno): 158 pp.Google Scholar
Frechen, M., 1994. Thermolumieszenz-Datierungen an Lössen des Tönchesberges aus der Osteifel. Eiszeitalter und Gegenwart 44: 7993.Google Scholar
Frechen, M., Boenigk, W. & Weidenfelder, M., 1995. Chronostratigraphie des ‘Eiszeitlichen Lößprofils’ in Koblenz-Metternich. Mainzer geowissenschaftliche Mitteilungen 24: 155180.Google Scholar
Guiot, J., 1990. Methodology of the last climatic cycle reconstruction in France from pollen data. Palaeogeography Palaeoclimatology Palaeoecology 80: 4969.CrossRefGoogle Scholar
Guiot, J., Reile, M., De Beaulieu, J.-L. & Pons, A., 1992. Calibration of the climatic signal in a new pollen sequence from La Grande Pile. Climatic Dynamics 6: 259264.CrossRefGoogle Scholar
Gullentops, F., 1954. Contributions à la chronologie du Pléistocène et des formes du relief en Belgique. Mémoires de l’Institut Géologique de l’Université de Louvain 18: 125166.Google Scholar
Haesaerts, P. & Cahen, D., 1997. The Sc-004 Research Network ‘Prehistory and evolution of the environment during the last 100 000 years in the Freat European Plain’: an overview. Prehistoire Europeenne 11: 213225.Google Scholar
Haesaerts, P. & Van Vliet, B., 1974. Compte rendu de l’excursion du 25 mai 1974 consacrée à la stratigraphie des limons aux environs du Mons. Annales de la Société Géologique de Belgique 97: 503516.Google Scholar
Haesaerts, P. & Van Vliet-Lanoë, B., 1981: Phénomènes périglaciaires et sols fossiles observés à Maisières-Canal, à Harmignies et à Rocourt (Belgique). Biuletyn Peryglacjalny 28: 291324.Google Scholar
Haesaerts, P., Juvigné, E., Kuyl, O., Mucher, H. & Roebroeks, W., 1981. Compte rendu de l’excursion du 13 Juin 1981 en Hesbaye et au Limbourg néerlandais, consacrée à la stratigraphie des loess du Pleistocène supérieur. Annales de la Société Géologique de Belgique 104: 223240.Google Scholar
Haesaerts, P., Mestdagh, H. & Bosquet, D., 1999. The sequence of Remicourt (Hesbaye, Belgium): new insights of the pedo- and chronostratigraphy of the Rocourt Soil. Geologica Belgica 2: 527.CrossRefGoogle Scholar
Huijzer, A.S., 1993. Cryogenic microfabrics and macrostructures: interrelations, processes, and paleoenvironmental significance. Ph.D. thesis Vrije Universiteit Amsterdam: 245 pp.Google Scholar
Juvigné, E., 1977. Zone de dispersion et âge des poussières volcaniques du tuf de Rocourt. Annales de la Société Géologique de Belgique 100: 1322.Google Scholar
Juvigné, E., Haesaerts, P., Mestdagh, H., Pissart, A. & Balescu, S., 1996. Révision du stratotype loessique de Kesselt (Limbourg, Belgique). Comptes rendus de l’Académie de Sciences de Paris 323 IIa: 801807.Google Scholar
Klima, B., Kukla, J., Lozek, V. & De Vries, H., 1961. Stratigraphie des Pleistozäns und Alter des paläolithischen Rastplatzes in der Ziegelei von Dolnl Vestonice (Unter-Wisternitz). Anthropozoikum 11: 93145.Google Scholar
Kukla, G.J. & Koci, A., 1972. End of the last interglacial in the loess record. Quarternary Research 2: 374383.CrossRefGoogle Scholar
Ladrière, J., 1890. Etude stratigraphique du terrain Quaternaire du Nord de la France. Annales de la Société Géologique du Nord 8: 93276.Google Scholar
Mackay, J.R., 1974. Reticulate ice veins in permafrost; Northern Canada. Canadian Geotechnical Journal 11: 230237.Google Scholar
Paepe, R. & Vanhoorne, R., 1967. The stratigraphy and palaeobotany of the Late Pleistocene in Belgium. Mémoire pour servir à l’explication des cartes géologiques et minières de la Belgique 8, Belgisch Geologisch Instituut (Brussel): 98 pp.Google Scholar
Pécsi, M. & Richter, G., 1996. Löss. Herkunft - Gliederung -Landschaften. Zeitschrift für Geomorphologie, Neue Folge 98: 392 pp.Google Scholar
Ruhe, R.V., 1965. Quaternary paleopedology. In: Wright, H.E. & Frey, D.G. (eds.): The Quaternary of the United States. Priceton University Press (Princeton, NJ): 755764.Google Scholar
Sycheva, S.A., 1993. Evolutional analysis of Upper Pleistocene catenas and geosystems (section of Zheleznogorsk) [in Russian]. Russian Academy of Sciences, Institute of Geography, Laboratory of Ecosystems Dynamics and Historic Biogeography (Moscow): 87 pp.Google Scholar
Van den Bogaard, P. & Schmincke, H.-U., 1990. Die Entwicklungsgeschichte des Mittelrheinraumes und die Eruptiongeschichte des Osteifel-Vulkanfeldes. In: Schirmer, W. (ed.): Rheingeschichte zwischen Mosel und Maas. Deutsche Quartärvereinigung (Hannover): 166190.Google Scholar
Van Vliet-Lanoë, B., 1985. Frost effects in soils. In: Boardman, J. (ed.): Soils and Quaternary landsape evolution. John Wiley & Sons Ltd. (London): 117158.Google Scholar
Van Vliet-Lanoë, B., 1986. Le pédocomplexe du dernier interglacaire (de 125 000 à 75 000 BP). Variations de faciès et signification paléoclimatique du Sud de la Pologne à l’Ouest de la Bretagne. Bulletin de l’Association Française pour l’Etude du Quaternaire 25/26: 139150.Google Scholar
Van Vliet-Lanoë, B., 1990a. Le pédocomplexe de Warneton: Où en est-on? Bilan paléopédologique et micromorphologique. Quaternaire 1: 6575.Google Scholar
Van Vliet-Lanoë, B., 1990b. The genesis and age of the argillic horizon in Weichselian loess of Northwestern Europe. Quaternary International 5: 4956.Google Scholar
Van Vliet-Lanoë, B., 1995. Solifluxion et transferts illuviaux dans les formations périglaciaires litées. Etat de la question. Géomorphologie: Relief, Processus, Environnement 2: 85113.CrossRefGoogle Scholar
Van Vliet-Lanoë, B. & Langohr, R., 1981. Correlation between fragipan and permafrost with special reference to Weichsel silty deposits in Belgium and Nothern France. Catena 8: 137154.CrossRefGoogle Scholar
Velichko, A.A. (ed.), 1982. Guidebook for Excursion C-3, International Union for Quaternary Research, XI Congress. Russian academy of Sciences (Moscow): 58 pp.Google Scholar
Velichko, A.A., 1990. Loess-paleosol formation on the Russian plain. Quaternary International 7/8: 103114.Google Scholar
Velichko, A.A., Haesaerts, P., Mestdagh, H., Morozova, T.D., Nechaev, V.P., Dlussky, K.G., Semenov, V.V. & Timireval, S.N., 1997. The key upper pleistocene section of middle Russian upland near Zheleznogorsk town. The results of joint Russian-Belgian researches. INQUA / ISSS Paleopedology Commission Newsletter 14: 3738.Google Scholar
Wansard, G., 1997. Correlations between loessic deposits of the Eurasian area (Germany-Austria-Czechia-Hungary-Russia-Siberia-China) based on the TL stratigraphy method. Préhistoire Européenne 11: 227243.Google Scholar
Woillard, G., 1975. Recherches palynologiques sur le Pléistocène dans l’Est de la Belgique et dans les Vosges Lorraines. Acta Geographica Lovaniensis 14: 118 pp.Google Scholar
Woillard, G., 1978. Grand Pile Peat Bog: a continuous pollen record for the last 140 000 years. Quaternary Research 9: 121.Google Scholar
Woillard, G. & Mook, W.G., 1982. Carbon-14 dates at Grande Pile: correlation of land and sea chronologies. Science 215: 159161.Google Scholar
Zöller, L., Oches, E.A. & McCoy, W.D., 1994. Towards a revised chronostratigraphy in Austria with respect to key sections in the Czech Republic and in Hungary. Quaternary Geochronology - Quaternary Science Reviews 13: 465472.Google Scholar