Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T18:51:08.275Z Has data issue: false hasContentIssue false

Paleoseismological analysis of the Rurrand fault near Jülich, Roer Valley graben, Germany: Coseismic or aseismic faulting history?

Published online by Cambridge University Press:  01 April 2016

K. Vanneste*
Affiliation:
Royal Observatory of Belgium, Ringlaan 3, B-l 180 Brussel, Belgium
K. Verbeeck
Affiliation:
Royal Observatory of Belgium, Ringlaan 3, B-l 180 Brussel, Belgium
*
Royal Observatory of Belgium, Ringlaan 3, B-l 180 Brussel, Belgium, tel. +32-2-3730280 / fax +32-2-3730339, email: kris.vanneste(S)oma.be
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A first trench has been excavated for paleoseismological analysis in the German part of the Roer Valley graben, which has experienced several historical earthquakes with a maximum intensity up to VIII on the MSK-scale.The trench has exposed the Rurrand fault as a complex fault zone with at least five separate, SW-dipping, normal fault strands displacing an early Pleistocene terrace of the Rhine river by more than 7 m. The major part of the observed deformation was produced during or after deposition of an overlying unit of stratified loess of middle Weichselian to probably Saalian age. The faulting history is shown to be episodic, with different fault strands active at different times. Growth faulting that would be indicative of continuous, aseismic fault motion has not been observed. Our stratigraphic control is not sufficient to constrain the timing and to provide evidence of the coseismic nature for each observed fault displacement. However, two units of structureless, gravelly loess are interpreted as the result of extensive solifluction triggered by two large surface-rupturing events. This is suggested by the position of these units, which is controlled by the main faults, and by their remarkably young age (< 400 cal. BC), indicated by radiocarbon and OSL datings and by the presence of historic brick fragments. At least two faults show moderate activity that is even younger. Our interpretation is not in agreement with earlier hypotheses that ongoing vertical movements of circa 1 mm/a in the German part of the Lower Rhine graben are the result of aseismic fault creep, but is in line with the results of similar investigations on the southwestern border fault of the Roer Valley Graben in Belgium, which demonstrates the need for further paleoseismological research in this region. The Rurrand fault is presently experiencing aseismic slip on its superficial portion, induced by extensive groundwater lowering for mining purposes. This ongoing deformation seems to be expressed in the trench as diffuse bundles of anastomosing cracks extending up to, and in some cases even into the plough zone, rather than as sharp fault planes which are typical of older, tectonic fault movements.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2001

References

Ahorner, L., 1968. Erdbeben und jüngste Tektonik im Braun-kohlenrevier der Niederrheinischen Bucht. Z. deutsch. Geol. Ges. 118: 150160.CrossRefGoogle Scholar
Ahorner, L., 1975. Present-day stress field and seismotectonic block movements along major fault zones in central Europe. Tectonophysics 29: 233249.CrossRefGoogle Scholar
Ahorner, L., 1994. Fault-plane solutions and source parameters of the 1992 Roermond, the Netherlands, mainshock and its stronger aftershocks from regional seismic data. Geologie en Mijnbouw 73(2–4): 199214.Google Scholar
Alexandre, P., 1990. Les séismes en Europe Occidentale de 324 à 1259: Nouveau catalogue critique. Publications de l’Observatoire Royal de Belgique, Série Géophysique, Bruxelles, 267 pp.Google Scholar
Alexandre, P., 1994. Historical seismicity of the lower Rhine and Meuse valleys from 600 to 1525: A new critical review. Geologie en Mijnbouw 73(2–4): 431438.Google Scholar
Alexandre, P. & Kupper, J.-L., 1997. Le tremblement de terre de 1692. Feuillets de la cathédrale de Liège 28–32: 319.Google Scholar
Camelbeeck, T. & Meghraoui, M., 1996. Large earthquakes in northern Europe more likely than once thought. EOS, Transactions, AGU 77(42): 405,409.CrossRefGoogle Scholar
Camelbeeck, T. & Meghraoui, M., 1998. Geological and geophysical evidence for large paleoearthquakes with surface faulting in the Roer Graben (northwest Europe). Geophysical Journal International 132: 347362.CrossRefGoogle Scholar
Camelbeeck, T., van Eck, T., Pelzing, R., Ahorner, L., Loohuis, L., Haak, H.W., Hoang-Trong, P. & Hollnack, T., 1994. The 1992 Roermond earthquake, the Netherlands, and its aftershocks. Geologie en Mijnbouw 73(2–4): 181197.Google Scholar
Geluk, M.C., Duin, E.J.Th., Dusar, M., Rijkers, M.H.B., Van den Berg, M.W., & van Rooijen, P., 1994. Stratigraphy and tectonics of the Roer Valley Graben. Geologie en Mijnbouw 73 (2–4): 129141.Google Scholar
Gullentops, F., Paulissen, E. & Vandenberghe, J., 1981. Fossil periglacial phenomena in NE-Belgium. Biuletyn Peryglacjalny 28: 345365.Google Scholar
Hinzen, K.-G., Reamer, S.K. & Rose, T., 2001, this volume. Geomorphological aspects of site selection at the Rurrand Fault for paleoseismological investigations. Submitted to Netherlands Journal of Geosciences (Geologie en Mijnbouw).CrossRefGoogle Scholar
Juvigné, E., Haesaerts, P., Mestdagh, H., Pissart, A., and Balescu, S., 1996. Révision du stratotype loessique de Kesselt (Limbourg, Belgique). C. R. Acad. Sci. Paris 323 (Ha): 801807.Google Scholar
Lehmann, K., Klostermann, J. & Pelzing, R., 2001, this volume. Paleoseismological investigations at the Rurrand Fault, Lower Rhine Embayment. Submitted to Netherlands Journal of Geosciences (Geologie en Mijnbouw).CrossRefGoogle Scholar
Meghraoui, M., Camelbeeck, T., Vanneste, K., Brondeel, M., & Jongmans, D., 2000. Active faulting and paleoseismology along the Bree fault zone, Lower Rhine graben (Belgium). Journal of Geophysical Research 105: 1380913841.CrossRefGoogle Scholar
McCalpin, J.P. (ed), 1996. Paleoseismology. Academic Press, San Diego, 583 pp.Google Scholar
Pantosti, D., Schwartz, D.P. & Valensise, G., 1993. Paleoseismology along the 1980 surface rupture of the Irpina fault: implications for earthquake recurrence in the southern Apennines, Italy. Journal of Geophysical Research 98: 65616577.CrossRefGoogle Scholar
Pelzing, R., 1994. Source parameters of the 1992 Roermond earthquake, the Netherlands, and some of its aftershocks recorded at the stations of the Geological Survey of Northrhine-Westphalia. Geologie en Mijnbouw 73 (2–4): 215223.Google Scholar
Quinif, Y., 1990. La datation des spéléothèmes (U/Th) appliquée aux séquences sédimentaires souterraines pour une mise en évidence des ruptures paléoclimatiques. Karstologia Mémoires 2: 2332.Google Scholar
Schaefer, W., 1999. Bodenbewegungen und Bergschadensreg-ulierung im Rheinischen Braunkohlenrevier. Proceedings of the 42. DMV-Tagung, Cottbus, September 1999: 110.Google Scholar
Scholz, C.H., 1990. The mechanics of earthquakes and faulting. Cambridge University Press, 439 pp.Google Scholar
Seismic Hazard Working Party, 1993. A review of the seismotecton-ics of Britain in the context of NW Europe. Report on seismic hazard assessment, Vol. 3J, Nuclear Electric: 135 pp.Google Scholar
Van den Berg, M.W., 1994. Neotectonics of the Roer Valley rift system: Style and rate of crustal deformation inferred from syn-tectonic sedimentation. Geologie en Mijnbouw 73 (2–4): 143156.Google Scholar
Wells, D.L. & Coppersmith, K.J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America 84 (4): 9741002.CrossRefGoogle Scholar