Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T17:40:34.876Z Has data issue: false hasContentIssue false

New groundwater-level rise data from the Rhine-Meuse delta – implications for the reconstruction of Holocene relative mean sea-level rise and differential land-level movements

Published online by Cambridge University Press:  01 April 2016

H.J.A. Berendsen
Affiliation:
Faculty of Geosciences, Department of Physical Geography, Utrecht University, Heidelberglaan 2, 3534 CS Utrecht, the Netherlands
B Makaske*
Affiliation:
Faculty of Geosciences, Department of Physical Geography, Utrecht University, the Netherlands; now at: Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, the Netherlands
O. van de Plassche
Affiliation:
Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands.
M.H.M van Ree
Affiliation:
Faculty of Geosciences, Department of Physical Geography, Utrecht University, Heidelberglaan 2, 3534 CS Utrecht, the Netherlands
S. Das
Affiliation:
Faculty of Geosciences, Department of Physical Geography, Utrecht University, Heidelberglaan 2, 3534 CS Utrecht, the Netherlands
M. van Dongen
Affiliation:
Faculty of Geosciences, Department of Physical Geography, Utrecht University, Heidelberglaan 2, 3534 CS Utrecht, the Netherlands
S. Ploumen
Affiliation:
Faculty of Geosciences, Department of Physical Geography, Utrecht University, Heidelberglaan 2, 3534 CS Utrecht, the Netherlands
W. Schoenmakers
Affiliation:
Faculty of Geosciences, Department of Physical Geography, Utrecht University, Heidelberglaan 2, 3534 CS Utrecht, the Netherlands
*
* Corresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present new local groundwater-level rise data from two Late Glacial aeolian dunes, located near Barendrecht and Oud-Alblas in the western Rhine-Meuse delta. These data are based on AMS radiocarbon dating of terrestrial macrofossils, collected from the base of peat formed on the slopes of these dunes. This method avoids contamination of bulk peat samples by old soil carbon or younger rootlets and rhizomes, as well as the hardwater effect. The new data are used to assess the reliability of previously published groundwater-level index data based on conventional radiocarbon dating of bulk basal peat samples from the slopes of the Late Glacial aeolian dunes at Barendrecht, Hillegersberg, Bolnes and Wijngaarden, all located in the western Rhine-Meuse delta.

Comparison of the new and published groundwater-level data shows no significant systematic difference between conventionally dated bulk peat samples and AMS-dated samples of terrestrial macrofossils. The new data from the dune at Barendrecht confirm the reliability of the younger than 6600 cal yr BP age-depth data from the dunes at Hillegersberg and near Bolnes. This result supports the validity of this part of the mean sea-level (MSL) curve for the western Netherlands. Consequently, the position of the groundwater-level curve for Flevoland (central Netherlands) below this MSL curve can most likely be attributed to differential land-level movement.

The available data show that the groundwater-gradient effect in the western Rhine-Meuse delta became less than 5 cm/km after 6600 cal yr BP. Finally, temporal correlation between temporary increases in local groundwater-level rise with known shifts of river courses in the delta plain suggests, that avulsions can explain sudden local deviations from the trend in groundwater-level rise. A general conclusion of this study is that a complex relationship exists between sea level and local delta-plain water levels.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2007

References

Beets, D.J., Van der Valk, L. & Stive, M.J.F., 1992. Holocene evolution of the coast of Holland. Marine Geology 103: 423443.Google Scholar
Beets, D.J., Van der Spek, A.J.F. & Van der Valk, L., 1994. Holocene ontwikkeling van de Nederlandse kust. RGD rapport 40.016 – Projekt Kustgenese, Rijks Geologische Dienst (Haarlem): 53 pp.Google Scholar
Beets, D.J. & Van der Spek, A.J.F., 2000. The Holocene evolution of the barrier and the back-barrier basins of Belgium and the Netherlands as a function of late Weichselian morphology, relative sea-level rise and sediment supply. Geologie en Mijnbouw / Netherlands Journal for Geosciences 79: 316.Google Scholar
Berendsen, H.J.A. & Stouthamer, E., 2001. Palaeogeographic development of the Rhine-Meuse delta, the Netherlands. Van Gorcum (Assen): 250 pp.Google Scholar
Bosch, J.H.A. & Kok, H., 1994. Toelichtingen bij de geologische kaart van Nederland 1: 50.000; blad Gorinchem (Gorkum) West (38W). Rijks Geologische Dienst (Haarlem): 159 pp.Google Scholar
Cohen, K.M., 2003. Differential subsidence within a coastal prism, Late-Glacial – Holocene tectonics in the Rhine-Meuse delta, the Netherlands. Netherlands Geographical Studies 316, Koninklijk Nederlands Aardrijkskundig Genootschap / Faculteit Ruimtelijke Wetenschappen, Universiteit Utrecht (Utrecht): 176 pp.Google Scholar
Jelgersma, S., 1961. Holocene sea-level changes in the Netherlands. Mededelingen van de Geologische Stichting, Serie C 6 (7): 1100.Google Scholar
Jelgersma, S., 1979. Sea-level changes in the North Sea basin. In: Oele, E., Schüttenhelm, R.T.E. & Wiggers, A.J. (eds): The Quaternary history of the North Sea – Acta Univ. Uppsala Symp. Univ. Upps. Ann. Quingent. Celebr. 2: 233248.Google Scholar
Jelgersma, S., 1980. Late Caenozoic sea level changes in the Netherlands and the adjacent North Sea basin. In: Mörner, N.-A. (ed.): Earth rheology, isostasy and eustacy. John Wiley, London: 435447.Google Scholar
Kiden, P., 1995. Holocene relative sea-level change and crustal movement in the southwestern Netherlands. Marine Geology 124: 2141.Google Scholar
Kiden, P., Denys, L. & Johnston, P., 2002. Late Quaternary sea-level change and isostatic and tectonic land movements along the Belgian-Dutch North Sea coast: geological data and model results. Journal of Quaternary Science 17 (5–6): 535546.Google Scholar
Makaske, B., 1998. Anastomosing rivers; forms, processes and sediments. Netherlands Geographical Studies 249, Koninklijk Nederlands Aardrijkskundig Genootschap / Faculteit Ruimtelijke Wetenschappen, Universiteit Utrecht (Utrecht): 287 pp.Google Scholar
Makaske, B., Van Smeerdijk, D.G., Peeters, H., Mulder, J.R. & Spek, T., 2003. Relative water-level rise in the Flevo lagoon (the Netherlands), 5300 – 2300 cal. yr BC: an evaluation of new and existing basal peat time-depth data. Netherlands Journal of Geosciences / Geologie en Mijnbouw 82: 115131.Google Scholar
Makaske, B., Maathuis, B.H.P., Padovani, C.R., Stolker, C. & Mosselman, E., 2006. Recent avulsions on the Taquari megafan, Pantanal, south-western Brazil; natural or human causes? In: Weerts, H.J.T., Ritsema, I.L. & Van 0s, A.G. (eds): NCR-days 2005; research on river dynamics: from geological to operational time scales. NCR-publication 29–2006, Netherlands Centre for River studies (Delft): 1618.Google Scholar
Makaske, B., Berendsen, H.J.A. & Van Ree, M., 2007. Middle Holocene avulsion-belt deposits in the central Rhine-Meuse delta, the Netherlands. Journal of Sedimentary Research 77: 110123.Google Scholar
Menke, U., Van de Laar, E. & Lenselink, G., 1998. De geologie en bodem van Zuidelijk Flevoland. Flevobericht 415, Rijkswaterstaat Directie IJsselmeergebied (Lelystad): 93 pp.Google Scholar
Roep, Th. B. & Beets, D.J., 1988. Sea level rise and paleotidal levels from sedimentary structures in the coastal barriers in the western Netherlands since 5600 BP. Geologie en Mijnbouw 67: 5361.Google Scholar
Roeleveld, W. & Gotjé, W., 1993. Holocene waterspiegelontwikkeling in de Noordoostpolder in relatie tot zeespiegelbewegingen en kustontwikkeling. In: Gotjé, W.: De Holocene laagveenontwikkeling in de randzone van de Nederlandse kustvlakte (Noordoostpolder). Ph.D. thesis, Vrije Universiteit (Amsterdam): 7686.Google Scholar
Stouthamer, E. & Berendsen, H.J.A., 2007. Avulsion: the relative roles of autogenic and allogenic processes. Sedimentary Geology 198: 309325.Google Scholar
Streif, H., 1971. Stratigraphic und Faziesentwicklung im Küstengebiet von Woltzeten in Ostfriesland. Beihefte Geologisches Jahrbuch 119: 58 pp.Google Scholar
Streif, H., 1972. The results of stratigraphical and facial investigations in the coastal Holocene of Woltzeten/Ostfriesland, Germany. Geologiska Föreningen i Stockholm Förhandlingar 94: 281299.Google Scholar
Stuiver, M. & Van der Plicht, J. (eds), (1998). INTCAL98: Calibration Issue. Radiocarbon 40 (3): 10411081.CrossRefGoogle Scholar
Törnqvist, T.E. & Bierkens, M.F.P., 1994. How smooth should curves be for calibration of radiocarbon ages? Radiocarbon 36: 1126.Google Scholar
Törnqvist, T.E., De Jong, A.F.M., Oosterbaan, W.A. & Van der Borg, K., 1992. Accurate dating of organic deposits by AMS 14C measurement of macrofossils. Radiocarbon 34: 566577.Google Scholar
Törnqvist, T.E., Van Ree, M.H.M., Van ‘t Veer, R. & Van Geel, B., 1998. Improving methodology for high-resolution reconstruction of sea-level rise and neotectonics by paleoecological analysis and AMS 14C dating of basal peats. Quaternary Research 49: 7285.Google Scholar
Van de Plassche, O., 1980. Compaction and other sources of error in obtaining sea-level data: some results and consequences. Eiszeitalter und Gegenwart 30: 171181.Google Scholar
Van de Plassche, O., 1982. Sea-level change and water-level movements in the Netherlands during the Holocene. Mededelingen Rijks Geologische Dienst 36: 193.Google Scholar
Van de Plassche, O., 1995. Evolution of the intra-coastal tidal range in the Rhine-Meuse delta and Flevo Lagoon, 5700 – 3000 yrs cal B.C. Marine Geology 124: 113128.Google Scholar
Van de Plassche, O., Bohncke, S.J.P., Makaske, B. & Van der Plicht, J., 2005. Water-level changes in the Flevo area, central Netherlands (5300 – 1500 BC): implications for relative mean sea-level rise in the western Netherlands. Quaternary International 133134: 7793.Google Scholar
Van Dijk, G.J., Berendsen, H.J.A. & Roeleveld, W., 1991. Holocene water level development in the Netherlands’ river area; implications for sea-level reconstruction. Geologie en Mijnbouw 70: 311326.Google Scholar
Verbraeck, A., 1974. The genesis and age of the riverdunes (donken) in the Alblasserwaard. Mededelingen Rijks Geologische Dienst, Nieuwe Serie 25: 18.Google Scholar
Vink, A., Steffen, H., Reinhardt, L. & Kaufmann, G., in press. Holocene relative sea-level change, isostatic subsidence and the radial viscosity structure of the mantle of northwest Europe (Belgium, the Netherlands, Germany, southern North Sea). Quaternary Science Reviews, doi:10.1016/j.quascirev.2007.07.014.Google Scholar