Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-05T04:21:09.994Z Has data issue: false hasContentIssue false

Multi-proxy analysis: a reflection on essence and potential pitfalls

Published online by Cambridge University Press:  24 March 2014

J. Vandenberghe*
Affiliation:
Institute of Earth Sciences, VU University, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands. Email: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Multi-disciplinarity and multi-proxy approaches are necessary to understand the processes in complex earth systems. However, unlimited and uncontrolled multi-proxy-correlations may be risky. A number of case studies illustrate the potential pitfalls when the processes that drive the individual proxies have no common causal significance or dating is not precise enough. Crossing thresholds at different levels and delay times may also be factors that hamper direct correlations of proxies. Multi-proxy analysis of the intrinsic relationships between proxies in a system is the primary task before any correlation should be made.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2012

References

Antoine, P., Rousseau, D.-D., Zöller, L., Lang, A., Munaut, A.V., Hatté, C. & Fontugne, M., 2001. High resolution record of the last interglacial-glacial cycle in the Nussloch loess paleosol sequences, Upper Rhine Area, Germany. Quaternary International 76/77: 211229.CrossRefGoogle Scholar
Antoine, P., Rousseau, D.-D., Fuchs, M., Hatté, C., Gautier, C., Markovic, S.B., Jovanovic, M., Gaudeenyi, T., Moine, O. & Rossignol, J., 2009. Highresolution record of the last climatic cycle in the Southern Carpathian basin (Surduk, Vojvodina, Serbia). Quaternary International 198: 1936.CrossRefGoogle Scholar
Blaauw, M., 2010. Out of tune: the dangers of aligning proxy archives. Quaternary Science Reviews doi: 10.1016/j.quascirev.2010.11.012.CrossRefGoogle Scholar
Blaauw, M., Wohlfarth, B., Christen, A., Ampel, L., Veres, D., Hughen, K.A., Preusser, F. & Svensson, A., 2010a. Were last glacial climatic events simultaneous between Greenland and France? A quantitative comparison using non-tuned chronologies. Journal of Quaternary Science 25: 387394.CrossRefGoogle Scholar
Blaauw, M., Bennett, K.D. & Christen, A.D., 2010b. Random walk simulations of fossil proxy data. The Holocene 20: 645649.CrossRefGoogle Scholar
Bogotá-A., R.G., Groot, M.H.M., Hooghiemstra, H., Lourens, L.J., Van der Linden, M. & Berrio, J.C., 2011. Rapid climate change from North Andean Lake Fúquene pollen records driven by obliquity: implications for a basinwide biostratigraphic zonation for the last 284 ka. Quaternary Science Reviews 30: 33213337.CrossRefGoogle Scholar
Bokhorst, M.P., Beets, C.J., Marković, S.B., Gerasimenko, N.P., Matviishina, Z.N. & Frechen, M., 2009. Pedo-chemical climate proxies in Late Pleistocene Serbian-Ukranian loess sequences. Quaternary International 198: 113123.CrossRefGoogle Scholar
Bokhorst, M. & Vandenberghe, J., 2009. Validation of wiggle matching using a multi-proxy approach and its paleoclimatic significance. Journal of Quaternary Science 24: 937947.CrossRefGoogle Scholar
Gocke, M., Kuzyakov, Y. & Wiesenberg, G.L.B., 2010. Rizoliths in loess – evidence of post-sedimentary incorporation of root-derived organic matter in terrestrial sediments as assessed from molecular proxies. Organic Geochemistry 41: 11981206.CrossRefGoogle Scholar
Goetghebeur, E., 2011. Causal inference: Sense and Sensitivity versus Prior and Prejudice. Nova Acta Leopoldina 110–377: 4764.Google Scholar
Haesaerts, P., I Borziac, I., Chekha, V.P., Chirica, V., Damblon, F., Drozdov, N.I., Orlova, L.A., Pirson, S. & Van der Plicht, J., 2009. Climatic signature and radiocarbon chronology of middle and Late Pleniglacial loess from Eurasia: comparison with the marine and Greenland records. Radiocarbon 51: 301318.CrossRefGoogle Scholar
Hartmann, K., Wünnemann, B., Hölz, S., Kraetschell, A. & Zhang, H., 2011. Neotectonic constraints on the Gaxun Nur inland basin in north-central China, derived from remote sensing, geomorphology and geophysical analyses. In: Gloaguen, R. & Ratschbacher, L., (eds): Growth and Collapse of the Tibetan Plateau. Geological Society of London Special Publications 353: 221233.Google Scholar
Hoek, W.Z., 1997. Late-Glacial and early Holocene climatic events and chronology of vegetation development in the Netherlands. Vegetation History and Archaeobotany 6: 197213.CrossRefGoogle Scholar
Huggett, R.J., 2007. Fundamentals of Geomorphology. 2nd ed., Routledge (London).CrossRefGoogle Scholar
Lenton, T.M., 2011. Early warning of climate tipping points. Nature Climate Change 1: 201209.CrossRefGoogle Scholar
Lenton, T.M., Held, H., Kriegler, E., Hall, J.W., Lucht, W., Rahmstorf, S. & Schellnhuber, H.J., 2008. Tipping elements in the Earth's climate system. PNAS 105: 17861793.CrossRefGoogle ScholarPubMed
Lewin, J. & Gibbard, P.L., 2010. Quaternary river terraces in England: forms, sediments and processes. Geomorphology 120: 293311.CrossRefGoogle Scholar
Louis, H., 1961. Allgemeine Geomorphologie. 2. Aufl., W. De Gruyter & Co (Berlin).Google Scholar
Nugteren, G., Vandenberghe, J., Van Huissteden, J. & An, Z., 2004. A Quaternary climate record based on grain size analysis from the Luochuan loess section on the Central Loess Plateau, China. Global and Planetary Change 41: 167183.CrossRefGoogle Scholar
Porter, S. & An, Z., 1995. Correlation between climate events in the North Atlantic and China during the last glaciation. Nature 375: 305308.CrossRefGoogle Scholar
Rousseau, D.-D., Antoine, P., Hatté, C., Lang, A., Zöller, L., Fontugne, M., Othman, D.B., Luck, J.M., Moine, O., Labonne, M., Bentaleb, I. & Jolly, D., 2002. Abrupt millennial climatic changes from Nussloch (Germany) Upper Weichselian eolian records during last glaciation. Quaternary Science Reviews 21: 15771582.CrossRefGoogle Scholar
Sanchez-Goni, M.F., Cacho, I.,Turon, J.-L., Guiot, J., Sierro, F.J., Peypouquet, J-P., Grimalt, J.O. & Shackleton, J.J., 2002. Synchroneity between marine and terrestrial responses to millennialscale climatic variability during the last glacial period in the Mediterranean region. Climate dynamics 19: 95105.Google Scholar
Singhvi, A.K., Bluszcz, A., Bateman, M.D. & Someshwar Rao, M., 2001. Luminescence dating of loess-palaeosol sequences and coversands: methodological aspects and palaeoclimatic implications. Earth Science Reviews 54: 193211.CrossRefGoogle Scholar
Singhvi, A.K., 2011. Implicarions of luminescence dating of terrestrial sediements in land-sea correlations. INQUA Congress Bern, 21-28/7/2011. Abstract.Google Scholar
Van Huissteden, J., 1990. Tundra Rivers of the Last Glacial: sedimentation and geomorphological processes during the Middle Pleniglacial (Eastern Netherlands). Mededelingen Rijks Geologische Dienst 44–3: 1138.Google Scholar
Van Huissteden, J. & Kasse, C., 2001. Detection of rapid climate change in Last Glacial fluvial successions in the Netherlands. Global and Planetary Change 28: 319339.CrossRefGoogle Scholar
Van Huissteden, J., Gibbard, P.L. & Briant, R.M., 2001. Periglacial fluvial systems in northwest Europe during marine isotope stages 4 and 3. Quaternary International 79: 7588.CrossRefGoogle Scholar
Vandenberghe, J., 1993. Changing fluvial processes under changing periglacial conditions. Zeitschrift für Geomorphologie, Suppl. Bd. 88: 1728.Google Scholar
Vandenberghe, J., 1995. Timescales, climate and river development. Quaternary Science Reviews 14: 631638.CrossRefGoogle Scholar
Vandenberghe, J., 2002. The relation between climate and river processes, landforms and deposits during the Quaternary. Quaternary International 91: 1723.CrossRefGoogle Scholar
Vandenberghe, J. & Nugteren, G., 2001. Abrupt climatic changes recorded in loess sequences. Global and Planetary Change 28: 19.CrossRefGoogle Scholar
Vandenberghe, J., An, Z., Nugteren, G., Lu, H. & Van Huissteden, J., 1997. New absolute time scale for the Quaternary climate in the Chinese loess region by grain-size analysis. Geology 25–1: 3538.2.3.CO;2>CrossRefGoogle Scholar
Vandenberghe, J., Coope, G.R. & Kasse, C., 1998a. Quantitative reconstructions of palaeoclimates during the last interglacial-glacial in western and central Europe: an introduction. Journal of Quaternary Science 13: 361366.3.0.CO;2-O>CrossRefGoogle Scholar
Vandenberghe, J., Huijzer, A.S., Mücher, H. & Laan, W., 1998b. Short climatic oscillations in a western European loess sequence (Kesselt, Belgium). Journal of Quaternary Science 13: 471485.3.0.CO;2-T>CrossRefGoogle Scholar
Vriend, M.G.A., 2007. Lost in loess; Late Quaternary eolian dust dispersal patterns across central China inferred from decomposed loess grain-size records. PhD thesis, VU University Amsterdam, 153 pp.Google Scholar
Wiersma, A.P., Roche, D.M. & Renssen, H. 2011 Fingerprinting the 8.2 ka event climate response in a coupled climate model. Journal of Quaternary Science 26, 18.CrossRefGoogle Scholar
Williams, J.W., Blois, J.L. & Shuman, B.N., 2011. Extrinsic and intrinsic forcing of abrupt ecological change: case studies from the late Quaternary. Journal of Ecology 99: 664677.CrossRefGoogle Scholar
Wohlfarth, B.and 18 others, 2008. Rapid ecosystem response to abrupt climate changes during the last glacial period in western Europe, 40-16 ka. Geology 36: 407410.CrossRefGoogle Scholar
Zhou, L.P. & Shackleton, N.J., 1999. Misleading positions of geomagnetic reversal boundaries in Eurasian loess and implications for correlation between continental and marine sedimentary sequences. Earth and Planetary Science Letters 168: 117130.CrossRefGoogle Scholar