Published online by Cambridge University Press: 24 March 2014
In this article we study the morphodynamics of the Slufter on the short-term (months) and long-term (years to decades). The Slufter is a small, shallow tidal inlet located on the island of Texel, the Netherlands. A narrow (tens of meters) channel connects the North Sea with a dune valley of 400 ha. This narrow channel is located in between a 400-700 m wide opening in the dunes. Approximately 80% of the basin of the Slufter is located above mean high water level and is flooded only during storms, when a threshold water level is exceeded.
Analysis of historical aerial photographs revealed that the inlet channel migrates about 100 m per year. In the 1970's it migrated to the south, while since 1980 it is migrating to the north. When the channel reached the dunes at the north side of the dune breach the channel was relocated to the south by man. The channel inside the backbarrier basin was less dynamic. It shows a gradual growth and southward migration of a meander on a decadal time scale.
The short-term dynamics of the Slufter were studied during a field campaign in 2008. The campaign aimed at identifying the dominant hydrodynamic processes and morphological change during fair weather conditions and during storm events. During fair weather flow velocities in the main inlet channel were 0.5-0.8 m/s at water depths of 0-1.5 m, slightly ebb-dominant and associated morphological change was small. When water levels were above critical levels during a storm period the hydrodynamics in the main channel drastically changed. The flow in the main channel was highly ebb dominant. Long ebb periods with typical flow velocities of 2 m/s were alternated by much shorter flood periods with typical velocities of 0.5-1 m/s. This resulted in a net outflow of water via the main channel, while we measured a net inflow of water at the beach plain. During the storm period in 2008 we measured a 10 m migration of the channel to the north.
We conclude that the Slufter is a storm-dominated tidal inlet system.