Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T01:41:49.577Z Has data issue: false hasContentIssue false

Modelling the hydrocarbon generation and migration in the West Netherlands Basin, the Netherlands

Published online by Cambridge University Press:  01 April 2016

R.T. van Balen*
Affiliation:
Netherlands Institute of Applied Geoscience TNO - National Geological Survey, Department of Geo-Energy, P.O. Box 80015, 3508 TA Utrecht.
F. van Bergen
Affiliation:
Netherlands Institute of Applied Geoscience TNO - National Geological Survey, Department of Geo-Energy, P.O. Box 80015, 3508 TA Utrecht.
C. de Leeuw
Affiliation:
Netherlands Institute of Applied Geoscience TNO - National Geological Survey, Department of Geo-Energy, P.O. Box 80015, 3508 TA Utrecht.
H. Pagnier
Affiliation:
Netherlands Institute of Applied Geoscience TNO - National Geological Survey, Department of Geo-Energy, P.O. Box 80015, 3508 TA Utrecht.
H. Simmelink
Affiliation:
Netherlands Institute of Applied Geoscience TNO - National Geological Survey, Department of Geo-Energy, P.O. Box 80015, 3508 TA Utrecht.
J.D. van Wees
Affiliation:
Netherlands Institute of Applied Geoscience TNO - National Geological Survey, Department of Geo-Energy, P.O. Box 80015, 3508 TA Utrecht.
J.M. Verweij
Affiliation:
Netherlands Institute of Applied Geoscience TNO - National Geological Survey, Department of Geo-Energy, P.O. Box 80015, 3508 TA Utrecht.
*
2corresponding author; e-mail: [email protected]; http://www.nitg.tno.nl/basin-modelling
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The hydrocarbon systems of the Mesozoic, inverted West Netherlands Basin have been analyzed using 2-D forward modelling. Three source rocks are considered in the modelling: Lower Jurassic oil-prone shales, Westphalian gas-prone coal deposits, and Lower Namurian oil-prone shales. The Lower Namurian hydrocarbon system of the basin is discussed for the first time.

According to the modelling results of the Early Jurassic oil system, the oil accumulations were filled just after the main inversion event. Their predicted locations are in agreement with exploration results. Modelling results of the Westphalian gas system, however, show smaller and larger sized accumulations at unexplored locations. The gas reservoirs were filled during the Late Jurassic-Early Cretaceous rifting phase. Results of modelling of the Lower Namurian oil system indicate that gas formed by secondary cracking of the oils can have mixed with the Westphalian coal-derived gas. Such a mixing is inferred from geochemical analyses. The existence of a Lower Namurian hydrocarbon system in the West Netherlands Basin implies that hydrocarbons are possibly trapped in the Westphalian and Namurian successions. These potential traps in the basin have not yet been explored.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2000

References

Andrews-Speed, C.P., Oxburgh, E.R. & Cooper, B.A., 1984. Temperatures and depth-dependent heat flow in western North Sea. American Association of Petroleum Geologists Bulletin 68: 17641781.Google Scholar
Betz, D., Führer, F., Greiner, G. & Plein, E., 1987. Evolution of the Lower Saxony basin. Tectonophysics 137: 127170.Google Scholar
Bodenhausen, J.W.A.. & Ott, W.F., 1981. Habitat of the Rijswijk oil province, onshore, The Netherlands. In: Illing, L.V. & Hobson, G.D. (eds.): Petroleum geology of the continental shelf of NW Europe. Institute of Petroleum (London): 301309.Google Scholar
Bodri, B. & Jessop, A.M., 1989. Geothermal model of the continental margins of eastern Canada. Tectonophysics 164: 139150.CrossRefGoogle Scholar
Burrus, J. & Audebert, F., 1990. Thermal and compaction processes in a young rifted basin containing evaporites: Gulf of Lions, France. American Association of Petroleum Geologists Bulletin 74: 14201440.Google Scholar
Burrus, J., Kuhfuss, A., Doligez, B. & Ungerer, P., 1992. Are numerical models useful in reconstructing the migration of hydrocarbons? A discussion based on the Northern Viking Graben. In: England, W.A. & Fleet, A.J. (eds.): Petroleum migration. Geological Society Special Publication 59: 89109.Google Scholar
Burrus, J., Osadetz, K., Wolf, S., Doligez, B., Visser, K. & Dearborn, D., 1996. A two-dimensional regional basin model of Williston basin hydrocarbon systems. American Association of Petroleum Geologists Bulletin 80: 265291.Google Scholar
Cameron, N. & Ziegler, T., 1997. Probing the lower limits of a fairway: further pre-Permian potential in the southern North Sea. In: Ziegler, K., Turner, P. & Daines, S.R. (eds.): Petroleum geology of the southern North Sea: future potential. Geological Society Special Publication 123: 123142.Google Scholar
Cornford, C., 1998. Source rocks of hydrocarbons of the North Sea. In: Glennie, K.W. (ed.): Petroleum geology of the North Sea, basic concepts and recent advances (4th ed.). Blackwell Science Ltd. (London): 376462.CrossRefGoogle Scholar
Danesh, A., 1998. PVT and phase behaviour of petroleum reservoir fluids. Developments in Petroleum Geoscience 47 (Elsevier, Amsterdam): 388 pp.Google Scholar
De Bremaecker, J.C1., 1983. Temperature, subsidence, and hydrocarbon maturation in extensional basins: a finite element model. American Association of Petroleum Geologists Bulletin 67: 14101414.Google Scholar
De Jager, J., Doyle, M.A., Grantham, P.J. & Mabillard, J.E., 1996. Hydrocarbon habitat of the West Netherlands Basin. In: Rondeel, H.E., Batjes, D.A.J. & Nieuwenhuijs, W.H. (eds.): Geology of gas and oil under the Netherlands. Royal Geological and Mining Society of the Netherlands (KNGMG) / Kluwer Academic Publishers (Dordrecht): 191209.CrossRefGoogle Scholar
Dronkers, A.J. & Mrozek, F.J., 1991. Inverted basins of the Netherlands. First Break 9: 409425.CrossRefGoogle Scholar
Dusar, M., Bless, M.J.M., Burger, K., Demaret, M., Hardy, M., Langenaeker, V., Lie Sun, Fan, Paproth, E., Piérart, E., Somers, Y., Streel, M. &Wouters, L., 1998. De steenkool verkenningsboring Hechtel-Hoef. Geological Survey Belgium Professional Paper 286: 129 pp.Google Scholar
Geluk, M., 1999a. Late Permian (Zechstein) rifting in the Netherlands: models and implications for petroleum geology. Petroleum Geoscience 5: 189199.CrossRefGoogle Scholar
Geluk, M.C., 1999b. Palaeogeographic and structural development of the Triassic in the Netherlands - new insights. In: Bachmann, G.H. & Lerche, I. (eds.): The epicontinental Triassic 1. Zentralblatt für Geologie und Paläontologie (in press).Google Scholar
Geluk, M.C., Plomp, A. & Van Doom, Th.H.M., 1996. Development of the Permo-Triassic succession in the basin fringe area. In: Rondeel, H.E., Batjes, D.A.J. & Nieuwenhuijs, W.H. (eds.) Geology of gas and oil under the Netherlands. Royal Geological and Mining Society of the Netherlands (KNGMG) / Kluwer Academic Publishers (Dordrecht): 5778.Google Scholar
Gerling, P., Geluk, M.C., Kockel, F., Lokhorst, A., Lott, H.K. & Nicholson, R.A., 1999. NW European gas atlas - new implications for the Carboniferous gas plays in the western part of the Southern Permian Basin. In: Fleet, A.J. & Boldy, S.A.R. (eds.): Petroleum geology of Northwest Europe - Proceedings of the Fifth Conference. Geological Society (London): 799808.Google Scholar
Gras, R. & Geluk, M.C., 1999. Late Cretaceous-Early Tertiary sedimentation and tectonic inversion in the southern Netherlands. Geologie en Mijnbouw 78: 119.CrossRefGoogle Scholar
Harland, W.B., Armstrong, R.L., Cox, A.V., Craig, L.E., Smith, A.G. & Smith, D.G., 1990. A geological time scale. Cambridge University Press (Cambridge): 263 pp.Google Scholar
Heybroek, P., 1974. Explanation to tectonic maps of the Netherlands. Geologie en Mijnbouw 53: 4350.Google Scholar
Kooi, H., Cloetingh, S. & Remmelts, G., 1989. Intraplate stresses and the stratigraphic evolution of the North Sea Central Graben. Geologie en Mijnbouw 68: 4972.Google Scholar
Langenaeker, V., 1998. The Campine Basin, stratigraphy, structural geology, coalification and hydrocarbon potential for the Devonian to Jurassic. Ph.D. thesis Katholieke Universiteit Leuven (Leuven): 213 pp.Google Scholar
Lee, M., Aranson, J.L. & Savin, S.M., 1985. K/Ar dating of time of gas emplacement in Rotliegendes sandstone, Netherlands. American Association of Petroleum Geologists Bulletin 69: 13811385.Google Scholar
Lippolt, H.J., Hess, J.C. & Burger, K., 1984. Isotopische Alter von pyroklastischen Sanidien aus Kaolin-Kohlensteine aus Korrelationmarken für das mitteleuropäische Oberkarbon. Fortschritte Geologie Rheinland undWestfalen 32: 119150.Google Scholar
McKenzie, D.P., 1978 Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters 40: 2531.Google Scholar
Moretti, I., 1998. The role of faults in hydrocarbon migration. Petroleum Geoscience 4: 8194.CrossRefGoogle Scholar
Oakman, C.D. & Partington, M.A., 1998. Cretaceous. In: Glennie, K.W. (ed.): Petroleum geology of the North Sea, basic concepts and recent advances (4th ed.). Blackwell Science Ltd. (London): 294349.Google Scholar
Poelchau, H.S., Baker, D.R., Hantschel, Th., Horsfield, B. & Wygrala, B., 1997. Basin simulation and the design of the conceptual basin model. In: Welte, D.H., Horsfield, B. & Baker, D.R. (eds.): Petroleum and basin evolution: insights from petroleum geochemistry, geology and basin modelling. Springer Verlag (Berlin): 570.Google Scholar
Price, M., 1987. Fluid flow in the Chalk of England. In: Goff, J.C. & Williams, B.P.J. (eds.): Fluid flow in sedimentary basins and aquifers. Geological Society (London) Special Publication 34: 141156.Google Scholar
Racero-Baena, A. & Drake, S.J., 1996. Structural style and reservoir development in the West Netherlands oil province. In: Rondeel, H.E., Batjes, D.A.J. & Nieuwenhuijs, W.H. (eds.): Geology of gas and oil under the Netherlands. Royal Geological and Mining Society of the Netherlands (KNGMG) / Kluwer Academic Publishers (Dordrecht): 211227.Google Scholar
Rijkers, R.H.B. & Duin, E.J.Th., 1994. Crustal observations beneath the southern North Sea and their tectonic and geological implications.Tectonophysics 240: 215224.Google Scholar
Robertson Research International 1988 Netherlands North Sea study: an integrated analytical and evaluation study incorporating petroleum geology, geophysics and reservoir engineering. Internal report Netherlands Institute of Applied Geoscience TNO - National Geological Survey (Utrecht).Google Scholar
Roelofsen, J.W. & De Boer, W.D., 1991. Geology of the Lower Cretaceous Q/l oil-fields, Broad Fourteens basin, The Netherlands. In: Spencer, A.M. (ed.): Generation, accumulation, and production of Europe’s hydrocarbons. Special Publication, European Association of Petroleum Geoscientists 1 Oxford University Press (Oxford): 203216.Google Scholar
Royden, L. & Keen, C.E., 1980. Rifting processes and thermal evolution of the continental margin of eastern Canada determined from subsidence curves. Earth and Planetary Science Letters 51: 343361.CrossRefGoogle Scholar
Sclater, J.G. & Christie, P.A.F., 1980. Continental stretching: an explanation for the post Mid Cretaceous subsidence of the central North Sea Basin. Journal of Geophysical Research 85: 37113739.Google Scholar
Sibson, R.H., 1994. Crustal stress, faulting and fluid flow. In: Parnell, J. (ed.): Geofluids: origin, migration and evolution of fluids in sedimentary basins. Geological Society Special Publication 158: 137156.Google Scholar
Spain, D.R. & Conrad, C.P., 1997. Quantitative analysis of top-seal capacity: offshore Netherlands, southern North Sea. Geologie en Mijnbouw 76: 217226.Google Scholar
Steckler, M.S. & Watts, A.B., 1978. Subsidence of the Atlantic type continental margin off New York. Earth and Planetary Science Letters 41: 113.Google Scholar
Ungerer, P., Burrus, J., Doligez, B., Chénet, P.Y. & Bessis, F., 1990. Basin evaluation by integrated two-dimensional modelling of heat transfer, fluid flow, hydrocarbon generation, and migration. American Association of Petroleum Geologists Bulletin 74: 309335.Google Scholar
Van Adrichem Boogaert, H.A. & Kouwe, W.F.P., 1993-1997. Stratigraphic nomenclature of the Netherlands, revision and update by RGD and NOGEPA. Mededelingen Rijks Geologische Dienst (Haarlem) 50.Google Scholar
Van Balen, R.T. & Podladchikov, Y.Y. 1998 The effect of inplane force variations on a faulted elastic thin-plate: Implications for rifted sedimentary basins - Geoph. Res. Lett. 25: 39033906.CrossRefGoogle Scholar
Van Balen, R.T. & Skar, T., 1999. The influence of faults and intraplate stresses on the overpressure evolution of the Halten Terrace, mid-Norwegian margin. Tectonophysics (in press).Google Scholar
Van Balen, R.T., Podladchikov, Y.Y. & Cloetingh, S.A.P.L., 1998. A new multi-layered model for intraplate stress-induced differential subsidence of faulted lithosphere, applied to rifted basins. Tectonics 17:938954.Google Scholar
Van Bergen, F., 1998. Basin modelling and hydrocarbon generation in theWNB-an organic petrological and organic geochemical approach. Internal report Netherlands Institute of Applied Geoscience TNO - National Geological Survey (Utrecht) 98-148B: 120 pp.Google Scholar
Van Wees, J.D. & Cloetingh, S.A.P.L., 1996. 3D Flexure and intraplate compression in the North Sea Basin. Tectonophysics 266:341359.CrossRefGoogle Scholar
Van Wees, J.D. & Stephenson, R.A., 1995. Quantitative modelling of basin and rheological evolution of the Iberian Basin (Central Spain): implications for lithospheric dynamics of intraplate extension and inversion. Tectonophysics 252: 163178.Google Scholar
Van Wees, J.D., Arche, A., Beijdorff, C.G., López-Gómez, J. & Cloetingh, S.A.P.L., 1998. Temporal and spatial variations in tectonic subsidence in the Iberian Basin (eastern Spain): inferences from automated forward modelling of high-resolution stratigraphy (Permian-Mesozoic).Tectonophysics 300: 285310.CrossRefGoogle Scholar
Van Wijhe, D.H., 1987. Structural evolution of inverted basins in the Dutch offshore.Tectonophysics 137: 171219.CrossRefGoogle Scholar
Vasseur, G. & Demongodin, L., 1995. Convective and conductive heat transfer in sedimentary basins. Basin Research 7: 6779.Google Scholar
Verweij, H., 1999. Application of fluid flow systems analysis to reconstruct the post-Carboniferous hydrogeohistory of the onshore and offshore Netherlands. Marine Petroleum Geology (in press).Google Scholar
Voigt, E., 1963. Über Randtröge vor Schollenrändern und ihre Bedeuting im Gebiet der Mitteleuropäische Senke und angrenzender Gebiete. Zeitschrift der deutschen geologischen Gesellschaft 114: 378418.Google Scholar
Winstanley, A.M., 1993. A review of the Triassic play in the Roer Valley Graben, SE onshore Netherlands. In: Parker, J.R. (ed.): Petroleum geology of Northwest Europe - Proceedings of the 4th Conference. Geological Society (London): 595607.Google Scholar
Ziegler, P.A., 1990. Geological atlas of western and central Europe (2). Shell Internationale Petroleum Maatschappij / Geological Society Publishing House (Bath): 239 pp.Google Scholar