Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T09:21:16.415Z Has data issue: false hasContentIssue false

Modelling the effect of water-table management on CO2 and CH4 fluxes from peat soils

Published online by Cambridge University Press:  01 April 2016

J. van Huissteden*
Affiliation:
Department of Hydrology and GeoEnvironmental Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
R. van den Bos
Affiliation:
Department of Hydrology and GeoEnvironmental Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
I. Marticorena Alvarez
Affiliation:
C/ Ramón Gómez de la Serna 53 1°B, 28035 Madrid, Spain
*
*Corresponding author. Email:[email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Drainage of peatlands for agriculture causes an increase of CO2 flux from peat decomposition, contributing to national CO2 emission. The reverse process, i.e. for re-creation of wetlands, reduces the CO2 flux, but increases the CH4 flux. We developed a process model (PEATLAND) to simulate these fluxes from peat soils subject to different water-table management scenarios. The model combines primary production, aerobic decomposition of soil organic matter (including the soil-parent material, peat), CH4 formation, oxidation, and transport. Model input requires specification of water table and air temperature data sets, vegetation parameters such as primary production and parameters related to gas transport, and basic soil physical data.

Validation using closed flux-chamber measurements of CO2 and CH4 from five different sites in the western Netherlands shows that seasonal changes in fluxes of CO2 and CH4 are correctly modelled. However, the CO2 submodel underestimates peat decomposition when peat decomposition rates obtained from laboratory incubation experiments are used as input. Field decomposition rates are considerably higher. This is attributed to enhancement of decomposition by the addition of easily decomposable material from root exudation (’priming effect’). Model experiments indicate that 1) drainage increases the CO2 production from peat decomposition strongly; 2) restoring a high water table may decrease the total greenhouse gas flux by a small amount although the CH4 flux increases strongly; 3) a warmer climate may cause higher greenhouse gas fluxes from peat soils resulting in a positive feedback to climate warming, and 4) high vegetation productivity in fen meadows may stimulate peat decomposition by the priming effect.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2006

References

Arah, J.R.M. & Stephen, K.D., 1998. A model of the processes leading to methane emission from peatland. Atmospheric Environment 32: 3257–3264.CrossRefGoogle Scholar
Baas, W.J., 2001. Bodemdaling in veengebieden. Landschap, 18: 109–117.Google Scholar
Beckett, P.M., Armstrong, W. & Armstrong, J., 2001. Mathematical modelling of methane transport by Phragmites: the potential for diffusion within the roots and rhizosphere. Aquatic Botany 69: 293–312.CrossRefGoogle Scholar
Bergman, I., Svensson, B.H. & Nilsson, M., 1998. Regulation of methane production in a Swedish acid mire by pH, temperature and substrate. Soil Biology and Biochemistry 30: 729–741.CrossRefGoogle Scholar
Bogner, J.E., Sass, R.L. & Walter, B.P., 2000. Model comparisons of methane oxidation across a management gradient: Wetlands, rice production systems, and landfill. Global Biogeochem. Cycles 14: 1021–1033.Google Scholar
Busch, J. & Lösch, R., 1999. The gas exchange of Carex species from eutrophic wetlands and its dependence on microclimatic and soil wetness conditions. Physics and Chemistry of the Earth (B) 24: 117–120.CrossRefGoogle Scholar
Drew, M.C., 1990. Root function, development, growth and mineral nutrition. In: Lynch, J.M. The Rhizosphere. Wiley (New York): 35–58.Google Scholar
Dunfield, P., Knowles, R., Dumont, R. & Moore, T.R., 1993. Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH. Soil Biology and Biochemistry 25: 321–326.Google Scholar
Fernández Raga, M., 2004. Small-scale spatial variation of methane fluxes in peatlands in Holland. Internal Report Vrije Universiteit, Faculty of Earth and Life Sciences (Amsterdam): 72 pp.Google Scholar
Fiedler, S. & Sommer, M., 2000. Methane emissions, groundwater levels and redox potentials of common wetland soils in a temperate-humid climate. Global Biogeochemical Cycles 14: 1081–1093.Google Scholar
Freeman, C., Fenner, N., Ostle, N.J., Kang, H., Dowrick, D.J., Reynolds, B., Lock, M.A., Sleep, D., Hughes, S. & Hudson, J., 2004. Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature 430: 195–198.Google Scholar
Granberg, G., Ottoson-Löfvenius, M., Grip, H., Sundh, I. & Nilsson, M., 2001. Effect of climate variability from 1980 to 1997 on simulated methane emission from a boreal mixed mire in northern Sweden. Global Biogeochemical Cycles 15: 977–991.Google Scholar
Groenendijk, P. & Kroes, J.G., 1997.Modelling the nitrogen and phosphorous leaching to groundwater and surface water, ANIM0 3.5. Wageningen Report No. 144, DLO-Staring Centrum (Wageningen): 143 pp.Google Scholar
Hillel, D., 1998. Environmental soil physics. Academic Press (London): 771 pp.Google Scholar
Houghton, J.T., Meira Filho, L.G., Bruce, J., Lee, K., Callander, B.A., Haites, E., Harris, N. & Maskell, K., 1995. Climate change 1994. Radiative forcing of climate and an evaluation of the IPCC IS92 emissions scenarios. Cambridge University Press (Cambridge/New York): 339 pp.Google Scholar
Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., Van der Linden, P.J., Dai, X., Marskell, K. & Johnson, C.A., (Editors) 2001. Climate Change 2001. The scientific basis. Cambridge University Press (Cambridge/New York): 881 pp.Google Scholar
Jenkinson, D.S. & Rayner, J.H., 1977. The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Science, 123: 298–305.Google Scholar
King, J.Y. & Reeburgh, W.S., 2002. A pulse-labelling experiment to determine the contribution of recent plant photosynthates to net methane emission in arctic wet sedge tundra. Soil Biology & Biochemistry 34: 173–180.CrossRefGoogle Scholar
Kuikman, P.J., 1996. Quantification of carbon fluxes in grassland. Dutch National Research Programme on Global Air Pollution and Climate Change, Report no. 410 100 047, AB-DLO (Wageningen).Google Scholar
Kuzyakov, Y., Kretschmar, A. & Stahr, K., 1999. Contribution of Lolium perenne rhizodeposition to carbon turnover of pasture soil. Plant and Soil 213: 127–136.CrossRefGoogle Scholar
Kuzyakov, Y., Friedel, J.K. & Stahr, K., 2000. Review of mechanism and quantification of priming effects. Soil Biology and Biochemistry 32: 1485–1498.Google Scholar
Kuzyakov, Y., Ehrensberger, H. & Stahr, K., 2001. Carbon partitioning and below-ground translocation by Lolium perenne. Soil Biology and Biochemistry 33: 61–74.CrossRefGoogle Scholar
LNV, 2000. Natuur voor mensen, mensen voor natuur. Nota natuur, bos en landschap in de 21e eeuw. Ministerie van Landbouw, Natuurbeheer en Visserij, (Den Haag).Google Scholar
Martin, J.K., 1989. In situ decomposition of root-derived carbon. Soil Biology and Biochemistry 21: 973–974.CrossRefGoogle Scholar
Paul, E.A. & Clark, F.E., 1996. Soil microbiology and biogeochemistry, Academic Press (San Diego): 340 pp.Google Scholar
Paustian, K., Levine, E., Post, W.M. & Ryzhova, I.M., 1996. The use of models to integrate information and understanding of soil C at the regional scale. Geoderma 79: 227–260.Google Scholar
Schothorst, C.J., 1977. Subsidence of low moor peat in the western Netherlands. Geoderma 17: 265–291.Google Scholar
Segers, R., 1998. Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41:23–51.Google Scholar
Segers, R. & Kengen, S.W.M., 1998. Methane production as a function of anaerobic carbon mineralization: a process model. Soil Biology and Biochemistry 8/9: 1107–1117.Google Scholar
Segers, R. & Leffelaar, P.A., 2001. Modeling methane fluxes in wetlands with gas-transporting plants 3. Plotscale. Journal of Geophysical Research 106-D4: 3541–3558.Google Scholar
Segers, R., Rappoldt, C. & Leffelaar, P.A., 2001. Modelling methane fluxes in wetlands with gas-transporting plants. 2. Soil layer scale. Journal of Geophysical Research 106-D4: 3529–3540.Google Scholar
Smith, P., Smith, J.U., Powlson, D.S., McGill, W.B., Arah, J.R.M., Chertov, O.G., Coleman, K., Franko, V., Frolking, S., Jenkinson, D.S., Jensen, L.S., Kelly, R.H., Klein-Gunnewiek, H., Komarov, A.S., Li, C., Molina, J.A.E., Mueller, T., Parton, W.J., Thornley, J.H.M. & Whitmore, A.P., 1997. A comparison of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81: 153–225.Google Scholar
Thornley, J.H.M. & Johnson, I.R., 1990. Plant and crop modelling. Clarendon Press (Oxford): 669 pp.Google Scholar
Van den Bos, R.M., 2003. Restoration of former wetlands in the Netherlands; effect on the balance between CO2 sink and CH4 source. Netherlands Journal of Geosciences 82: 325–332.Google Scholar
Van den Bos, R.M. & Van de Plassche, O., 2003a. Variables influencing presentday emission of methane and carbon dioxide from coastal peatlands in the western Netherlands. In: Van den Bos, R.M.: Human influence on carbon fluxes in coastal peatlands; process analysis, quantification and prediction. Thesis, Vrije Universiteit (Amsterdam): 35–66.Google Scholar
Van den Bos, R.M. & Van de Plassche, O., 2003b. Incubation experiments with undisturbed cores from coastal peatlands (western Netherlands): carbon dioxide fluxes in response to temperature and water-table changes. In: Van den Bos, R.M.: Human influence on carbon fluxes in coastal peatlands; process analysis, quantification and prediction. Thesis, Vrije Universiteit (Amsterdam): 11–34.Google Scholar
Van den Pol - Van Dasselaar, A., Van Beusichem, M.L. & Oenema, O., 1997. Effects of grassland management on the emission of methane from intensively managed grasslands on peat soil. Plant and Soil 189: 1–9.Google Scholar
Van den Pol - Van Dasselaar, A., Van Beusichem, M.L. & Oenema, O., 1999a. Determinants of spatial variability of methane emissions from wet grasslands on peat soil. Biogeochemistry 44: 221–237.Google Scholar
Van den Pol - Van Dasselaar, A., Van Beusichem, M.L. & Oenema, O., 1999b. Methane emissions from wet grasslands on peat soil in a nature reserve. Biogeochemistry, 44: 205–220.Google Scholar
Von den Pol - Van Dasselaar, A. & Oenema, O., 1999. Methane production and carbon mineralization of size and density fractions of peat soils. Soil Biology and Biochemistry 31: 877–886.Google Scholar
Van der Nat, F.-J. & Middelburg, J.J., 1998. Seasonal variation in methane oxidation by the rhizosphere of Phragmites australis and Scirpus lacustris. Aquatic Botany 61: 95–110.CrossRefGoogle Scholar
Van der Nat, F.-J. & Middelburg, J.J., 2000. Methane emission from tidal freshwater marshes. Biogeochemistry 49: 103–121.Google Scholar
Van Huissteden, J., 2004. Methane emission from northern wetlands in Europe during Oxygen Isotope Stage 3. Quaternary Science Reviews 23: 1989–2005.Google Scholar
Van Huissteden, J., Maximov, T.C. & Dolman, A.J., 2005. High methane fluxes from an arctic floodplain (Indigirka lowlands, eastern Siberia). Journal of Geophysical Research, 110, G02002, doi: 10.1029/2005JG000010.Google Scholar
Vermeulen, J. & Hendriks, R.F.A., 1996. Bepaling van afbraaksnelheden van organische stof in laagveen. Ademhalingsmetingen aan ongestoorde veenmonsters in het laboratorium. Rapport 288, DLO-Staring Centrum (Wageningen).Google Scholar
Verville, J.H., Hobbie, S.E., Chapin III, F.S. & Hooper, D.U., 1998. Response of tundra CH4 and CO2 flux to manipulation of temperature and vegetation. Biogeochemistry 41: 215–235.Google Scholar
Walter, B.P., 2000. A process-based, climate-sensitive model to derive methane emissions from natural wetlands: Application to five wetland sites, sensitivity to model parameters, and climate. Global Biogeochemical Cycles 14: 745–765.Google Scholar
Walter, B.P., Heimann, M., Shannon, R.D. & White, J.R., 1996. A processbased model to derive methane emissions from natural wetlands. Report No. 215, Max-Planck-Institut für Meteorologie (Hamburg): 21 pp.Google Scholar
Whipps, J.M., 1990. Carbon economy. In: Lynch, J.M. (ed.): The Rhizosphere. Wiley (New York): 59–98.Google Scholar
Williams, P.J. & Smith, M.W., 1991. The Frozen Earth. Fundamentals of geocryology. Cambridge University Press (Cambridge): 306 pp.Google Scholar
Wösten, J.H.M., Veerman, G.J. & Stolte, J., 1994. Waterretentie- en doorlatend-heidskarakteristieken van boven- en ondergronden in Nederland: de Staringreeks. Technical Document 18, DLO-Staring Centrum (Wageningen): 66 pp.Google Scholar
Zhang, Y., Li, C., Trettin, C.C., Li, H. & Sun, G., 2002. An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems. Global Biogeochemical Cycles 16: 1061–1078 doi:10.1029/2001GB001838.CrossRefGoogle Scholar