Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-08T22:32:28.507Z Has data issue: false hasContentIssue false

Middle Palaeolithic artefact migration due to periglacial processes; a geological investigation into near-surface occurrence of Palaeolithic artefacts (Limburg-Eastern Brabant coversand region, the Netherlands)

Published online by Cambridge University Press:  24 March 2014

J. Deeben
Affiliation:
Cultural Heritage Agency, P.O. Box 1600, NL-3800 BP Amersfoort, the Netherlands
H. Hiddink
Affiliation:
Archaeological Centre Free University-Hendrik Brunsting Stichting, De Boelelaan 1105, NL-1081 HV Amsterdam, the Netherlands
D.J. Huisman*
Affiliation:
Cultural Heritage Agency, P.O. Box 1600, NL-3800 BP Amersfoort, the Netherlands Leiden University, Faculty of Archaeology, P.O. Box 9515, 2300 RA, Leiden, the Netherlands
A. Müller
Affiliation:
Cultural Heritage Agency, P.O. Box 1600, NL-3800 BP Amersfoort, the Netherlands
J. Schokker
Affiliation:
TNO – Geological Survey of the Netherlands, P.O. Box 80015, NL-3508 TA Utrecht, the Netherlands
J. Wallinga
Affiliation:
Netherlands Centre for Luminescence dating, Delft University of Technology, Mekelweg 15, NL-2629 JB, the Netherlands

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The original distribution pattern of Middle-Palaeolithic artefacts may be affected by tectonic movement, sedimentation and periglacial processes. This is e.g. the case in the coversand area of Limburg and Eastern Brabant (NL), where the occurrence of numerous finds in a SW-NE trending zone across the Roer Valley Graben is considered enigmatic. In order to elucidate the processes affecting the spatial distribution and the chance of recovery of such artefacts, we investigated a site in Nederweert. At this site, several Middle-Palaeolithic artefacts had been recovered earlier from unexpectedly shallow depths. A test pit profile and grain size analyses revealed that the shallow sediments at this site have been affected by intense, multi-phase cryoturbation, which has deformed the sand and loam layers and partially mixed them thoroughly. As a result, optically stimulated luminescence dating of these sediments yielded widely scattered single-aliquot equivalent dose distributions. Using a Finite Mixture Model (FMM), it was estimated that cryoturbation caused mixing of sediments deposited between 12 and 50 ka with sediment grains deposited between 60-150 ka. The latter material is probably the original context of the Middle-Paleolithic artefacts. Apparently, cryoturbation and potentially other periglacial processes have transported artefacts closer to the surface. Based on these results, we suggest that the occurrence of Middle-Palaeolithic artefacts is caused by (1) the tectonically-induced spatial distribution of layers of this age and (2) periglacial processes having caused migration of artefacts towards the surface. Although periglacial processes may facilitate finding Middle Palaeolithic artefacts, they may severely disturb the original context to such an extent that Middle Palaeolithic sites can no longer be identified. The results of this study form a basis for improving the Indicative Map of Archaeological Values that is used to predict the presence of archaeological sites. The insights gained are also relevant to other areas where Middle-Palaeolithic sites are affected by periglacial processes.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2010

References

Adamiec, G. & Aitken, M., 1998. Dose-rate conversion factors: update. Ancient TL 16: 3750.Google Scholar
Bettinger, R.L., 1991. Hunter-gatherers: Archaeological and evolutionary theory, Plenum press, New York.CrossRefGoogle Scholar
Boëda, E., 1988. Le concept levallois et évaluation de son champ d'application, In Otte, M. (ed.): L'Homme de Néanderthal 4: La technique, Études et Recherches Archéologiques de l'Université de Liege (Luik): 1326.Google Scholar
Busschers, P.S., Van Balen, R.T., Cohen, K.M., Kasse, C., Weerts, H.J.T., Wallinga, J. & Bunnik, F.P.M., 2008. Response of the Rhine-Meuse fluvial system to Saalian ice-sheet dynamics. Boreas 37: 377398.Google Scholar
Chambers, M.J.G., 1967. Investigations of patterned grounds on Signy Island, South Orkney Islands: III. Miniature patterns, frost heaving and general conclusions. British Antarctic Survey Bulletin 12: 122.Google Scholar
De Vries, F., De Groot, W.J.M., Hoogland, T. & Denneboom, J., 2003. De bodemkaart van nederland digitaal. Toelichting bij inhoud, actualiteit en methodiek en korte beschrijving van additionale informatie. Wageningen, Alterra-report 811. (In Dutch).Google Scholar
Deeben, J., Hallewas, D.P., Kolen, J. & Wiemer, R., 1997. Beyond the crystal ball: predictive modelling as a tool in archaeological heritage management and occupation history. In: Willems, W.J.H., Kars, H. & Hallewas, D.P. (eds): Archaeological Heritage Management in the Netherlands. Fifty Years State Service for Archaeological Investigations, van Gorcum(Assen/Amersfoort): 76118.Google Scholar
Deeben, J., Hallewas, D.P. & Maarleveld, Th.J., 2002. Predictive modelling in Archaeological Heritage Management of the Netherlands: the Indicative Map of Archaeological Values (2nd generation), Berichten van de Rijksdienst voor het Oudheidkundig Bodemonderzoek 45, Rijksdienst voor het Oudheidkundig Bodemonderzoek (Amersfoort): 956.Google Scholar
Deeben, J.H.C., Derikckx, W.J.B., Groenwoudt, B.J., Peeters, J.H.M. & Rensink, E., 2008. De Indicatieve Kaart van Archeologische Waarden, derde generatie. Rapportage Archeologische Monumentenzorg 155. Rijksdienst voor Archeologie, Cultuurlandschap en Monumenten (Amersfoort). (In Dutch).Google Scholar
Deeben, J., Hiddink, H., Huisman, D.J., Müller, A., Schokker, J. & Wallinga, J., 2009. De midden-paleolithische vuurstenen artefacten van het Rosveld te Nederweert, Rapportage Archeologische Monumentenzorg 171, Rijksdienst voor het Cultureel Erfgoed (Amersfoort). (In Dutch).Google Scholar
Duller, G.A.T., Batter-Jensen, L. & Murray, A.S., 2000. Optical dating of single sand-sized grains of quartz: sources of variability. Radiation Measurements 32: 453457.Google Scholar
Glauberman, Ph., 2006. Excavating surface sites, tapping a source of potential: The Middle Palaeolithic surface scatters of Southern Limburg (NL) and the case study of Colmont-Ponderosa, In: Rensink, E. & Peeters, H. (eds): Preserving the Early Past. Investigation, selection and preservation of Paleolithic and Mesolithic sites and landscapes. Nederlandse Archeologische Rapporten 31, Rijksdienst voor het Oudheidkundig Bodemonderzoek (Amersfoort): 87106.Google Scholar
Heijnens, H.M.L.G. & Tijssen, J.M., 1982. The influence of the development of a Weichselian coversand ridge on the drainage of a river valley in Noord-Brabant (the Netherlands): a geomorphological and palynological study. Geologie en Mijnbouw 61: 191199.Google Scholar
Hiddink, H., 2005. Opgravingen op het Rosveld bij Nederweert 1. Landschap en bewoning in de IJzertijd, Romeinse tijd en Middeleeuwen, (Zuidnederlandse Archeologische Rapporten 22/1), ACVU, (Amsterdam). (In Dutch).Google Scholar
Hilton, M.R., 1999. Quantifying postdepositional redistribution of the archaeological record produced by freeze-thaw and other mechanisms: An experimental approach, Journal of Archaeological Method and Theory 10: 165202.Google Scholar
Hublin, J.-J., Weston, D., Gunz, P., Richards, M., Roebroeks, W., Glimmerveen, J. & Anthonis, L., in press. Out of the North Sea: the Zeeland Ridges Neandertal, Journal of Human Evolution, doi:10.1016/j.jhevol.2009.09.001.Google Scholar
Huxtable, J., 1993. Further thermoluminescence dates for burnt flints from Maastricht-Belvédère and a finalised thermoluminescence age for the Unit IV Middle Palaeolithic sites. Mededelingen Rijks Geologische Dienst 47: 4144.Google Scholar
Johnson, D.L. & Hansen, K.L., 1974. The effects of frost heaving on objects in soil, Plains Anthropologist 19: 8198.Google Scholar
Lea, P.D., 1990. Pleistocene periglacial eolian deposits in southwestern Alaska: sedimentary facies and depositional processes. Journal of Sedimentary Petrology 60: 582591.Google Scholar
Mejdahl, V., 1979. Thermoluminescence dating: beta dose attenuation in quartz grains. Archaeometry 21: 6172.Google Scholar
Mente, A., 1961. Het resultaat van een palynologisch onderzoek van een Eemienafzetting bij Liessel (N.-Br.). Geologie en Mijnbouw 40: 7578. (in Dutch).Google Scholar
Niekus, M.J.L.Th. & Stapert, D., 2005. Het Midden-Paleolithicum in noord-Nederland. In: Deeben, J., Drenth, E., Van Orsouw, M.F. & Verhart, L. (eds): De steentijd van Nederland (Archeologie 11/12). Stichting Archeologie (Zutphen): 91118. (In Dutch).Google Scholar
Prescott, J.R. & Hutton, J.T., 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and log-term time variations. Radiation Measurements 23: 497500.Google Scholar
Rensink, E., 2005. Het Midden-Paleolithicum in Zuid-Nederland, In: Deeben, J., Drenth, E., Van Orsouw, M.F. & Verhart, L. (eds): De steentijd van Nederland (Archeologie 11/12). Stichting Archeologie (Zutphen): 119141. (In Dutch).Google Scholar
Roberts, R.G., Galbraith, R.F., Yoshida, H., Laslett, G.M. & Olley, J.M., 2000. Distinguishing dose populations in sediment mixtures: a test of single-grain optical dating procedures using mixtures of laboratory-dosed quartz. Radiation Measurements 32: 459465.Google Scholar
Rodnight, H., Duller, G.A.T., Tooth, S. & Wintle, A.G., 2005. Optical dating of a scroll-bar sequence on the Klip River, South Africa, to derive the lateral migration rate of a meander. The Holocene 15(6): 802811.Google Scholar
Roebroeks, W., 1988. From flint scatter to early hominid behaviour: a study of Middle Palaeolithic riverside at Maastricht-Belvedere. Analecta Praehistorica Leidensia 21.Google Scholar
Ruegg, G.H.J., 1983. Periglacial eolian evenly laminated sandy deposits in the Late Pleistocene of NW Europe, a facies unrecorded in modern sedimentological handbooks. In: Brookfield, M.E. & Ahlbrandt, T.S. (eds): Eolian sediments and processes (Developments in Sedimentology 38). Elsevier (Amsterdam): 455483.Google Scholar
Schokker, J. & Koster, E.A., 2004. Sedimentology and facies distribution of Pleistocene cold-climate aeolian and fluvial deposits in the Roer Valley Graben (southeastern Netherlands). Permafrost and Periglacial Processes 15: 120.CrossRefGoogle Scholar
Schokker, J., Cleveringa, P. & Murray, A.S., 2004. Palaeoenvironmental reconstruction and OSL dating of terrestrial Eemian deposits in the southeastern Netherlands. Journal of Quaternary Science 19: 193202.Google Scholar
Schokker, J., Cleveringa, P., Murray, A.S., Wallinga, J. & Westerhoff, W.E., 2005. An OSL dated Middle and Late Quaternary sedimentary record in the Roer Valley Graben (southeastern Netherlands). Quaternary Science Reviews 24: 22432264.Google Scholar
Schokker, J., Weerts, H.J.T., Westerhoff, W.E., Berendsen, H.J.A. & Den Otter, C., 2007. Introduction of the Boxtel Formation and implications for the Quaternary lithostratigraphy of the Netherlands. Netherlands Journal of Geosciences 86: 197210.CrossRefGoogle Scholar
Schwan, J., 1986. The origin of horizontal alternating bedding in Weichselian aeolian sands in northwestern Europe. Sedimentary Geology 49: 73108.Google Scholar
Stapert, D., 1981: Middle Palaeolithic from the beach at Cadzand (Province of Zeeland). Berichten van de Rijksdienst voor het Oudheidkundig Bodemonderzoek 31, Rijksdienst voor het Oudheidkundig Bodemonderzoek (Amersfoort) 292305.Google Scholar
Stapert, D., 1991. Archaeological research in the Fransche Kamp pit near Wageningen (central Netherlands). Mededelingen Rijks Geologische Dienst 46: 7188.Google Scholar
TNO, 2009. Lithostratigrafische Nomenclator Ondiepe Ondergrond. Available at: www.dinoloket.nl/nomenclatorShallow/start/start/introduction/index.html Accessed at: 16 04 2009.Google Scholar
Van Balen, R.T., 2006. Stuwwalontsluiting A28-Ecoduct, Amersfoort-Soesterberg. Grondboor & Hamer 60: 3743. (In Dutch).Google Scholar
Van den Berg, M.W., 1994. Neo-tectonics of the Roer Valley Rift System. Style and rate of crustal deformation inferred from syn-tectonic sedimentation. Geologie en Mijnbouw 73: 143156.Google Scholar
Vandenberghe, J., 1988. Cryoturbations. In: Clark, M.J. (ed.): Advances in periglacial geomorphology. Wiley, Chicester: 179198.Google Scholar
Van Kolfschoten, T. & Roebroeks, W., 1985. Maastricht-Belvédère: stratigraphy, palaeoenvironment and archaeology of the Middle and Late Pleistocene deposits, Mededelingen Rijks Geologische Dienst (Haarlem) 39: 1121.Google Scholar
Van Peer, P., 1992. The Levallois Reduction Strategy, (Monographs in World Archaeology 13), Prehistory Press, (Madison, Wisconsin).Google Scholar
Wallinga, J., Davids, F. & Dijkmans, J.W.A., 2007. Luminescence dating of Netherlands’ sediments. Netherlands Journal of Geosciences – Geologie en Mijnbouw 86: 179196.Google Scholar
Wallinga, J., Murray, A.S. & Better-Jensen, L., 2002. Measurement of the dose in quartz in the presence of feldspar contamination. Radiation Protection Dosimetry 101: 67370.Google Scholar
Westerhoff, W., 2009. Stratigraphy and sedimentary evolution. The lower Rhine-Meuse system during the Late Pliocene and Early Pleistocene (southern North Sea Basin), TNO Built Environment and Geosciences – Geological Survey of the Netherlands s.l.Google Scholar
Wobst, H.M., 1978. The archaeo-ethnology of hunter-gatherers, or the tyranny of the ethnographic record in archaeology. American Antiquity 43: 303309.Google Scholar
Zagwijn, W.H., 1989. The Netherlands during the Tertiary and the Quaternary: a case history of coastal lowland evolution. Geologie en Mijnbouw 68: 107120.Google Scholar
Zimmerman, D.W., 1971. Thermoluminescent dating using fine grains from pottery. Archaeometry 13: 2952.Google Scholar