Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T14:58:58.018Z Has data issue: false hasContentIssue false

Luminescence dating of Netherlands’ sediments

Published online by Cambridge University Press:  19 June 2017

J. Wallinga*
Affiliation:
Netherlands Centre for Luminescence dating, Delft University of Technology, Mekelweg 15, 2629 JB Delft, the Netherlands
F. Davids
Affiliation:
Netherlands Centre for Luminescence dating, Delft University of Technology, Mekelweg 15, 2629 JB Delft, the Netherlands Institute of Geography and Earth Sciences, University of Wales, Aberystwyth, SY23 3DB Ceredigion, UK
J.W.A. Dijkmans
Affiliation:
TNO Built Environment and Geosciences – Geological Survey of the Netherlands P.O. Box 80015, 3508 TA Utrecht, the Netherlands
*
*Corresponding author. Email: [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Over the last decades luminescence dating techniques have been developedthat allow earth scientists to determine the time of deposition ofsediments. In this contribution we review: 1) the development of themethodology; 2) tests of the reliability of luminescence dating onNetherlands’ sediments; and 3) geological applications of the method in theNetherlands. Our review shows that optically stimulated luminescence datingof quartz grains using the single aliquot regenerative dose method yieldsresults in agreement with independent age control for deposits ranging inage from a few years up to 125 ka. Optical dating of quartz has successfullybeen applied to sediments from a wide range of depositional environmentssuch as coastal dunes, cover sands, fluvial channel deposits, colluvialdeposits and fimic soils. These results demonstrate that optical dating is apowerful tool to explore the natural archive of the Netherlands’subsurface.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2007

References

Aitken, M.J., Fleming, S.J., Doell, R.R. & Tanguy, J.C., 1968. Thermoluminescent study of lavas from Mt. Etna and other historic flows: preliminary results. In: McDougall, DJ. (ed.): Thermoluminescence of Geological materials. Academic Press (New York): 359366.Google Scholar
Aitken, M.J., 1985. Thermoluminescence dating. Academic Press, London.Google Scholar
Aitken, M.J., 1998. An introduction to Optical dating. Oxford University Press, London.Google Scholar
Bailey, R.M., Smith, B.W., Rhodes, E.J., 1997. Partial bleaching and the decay form characteristics of quartz OSL. Radiation Measurements 27: 123136.10.1016/S1350-4487(96)00157-6Google Scholar
Ballarmi, M., Wallinga, J., Murray, A.S., Van Eeteren, S., Oost, A.P., Bos, A.J.J. & Van Eijk, C.W.E., 2003. Optical dating of young coastal dunes on a decadal time scale. Quaternary Science Reviews 22: 10111017.10.1016/S0277-3791(03)00043-XGoogle Scholar
Ballarmi, M., Wallinga, J., Wintle, A.G. & Bos, A.J.J., 2007a. A modified SAR protocol for optical dating of individual grains from young quartz deposits. Radiation Measurements 42: 360369.10.1016/j.radmeas.2006.12.016Google Scholar
Ballarmi, M., Wallinga, J., Wintle, A.G. & Bos, A.J.J., 2007b. Analysis of equivalent dose distributions for single grains of quartz from modern deposits. Quaternary Geochronology 2: 7782.10.1016/j.quageo.2006.05.001Google Scholar
Banerjee, D., Murray, A.S., Better-Jens en, L. & Lang, A., 2001. Equivalent dose estimation using a single aliquot of polymineral fine grains. Radiation Measurements 33: 7394.10.1016/S1350-4487(00)00101-3Google Scholar
Bateman, M.D. & Van Huissteden, J., 1999. The timing of last-glacial periglacial and aeolian events, Twente, eastern Netherlands. Journal of Quaternary Science 14: 277283.10.1002/(SICI)1099-1417(199905)14:3<277::AID-JQS460>3.0.CO;2-W3.0.CO;2-W>Google Scholar
Bokhorst, M.P., Duller, G.A.T. & Van Mourik, J.M., 2005. Optical dating of a Fimic anthrosol in the southern Netherlands. Journal of Archaeological Science 32: 547553.10.1016/j.jas.2003.11.011Google Scholar
Bos, A.J.J., Wallinga, J., Johns, C., Abellon, R.D., Brouwer, J.C., Schaart, D.R. & Murray, A.S., 2006. Accurate calibration of a laboratory beta particle dose rate for dating purposes. Radiation Measurements 41: 10201025.10.1016/j.radmeas.2006.04.003Google Scholar
Bøtter-Jensen, L., Bulur, E., Duller, G.A.T. & Murray, A.S., 2000. Advances in luminescence instrument systems. Radiation Measurements 32: 523528.10.1016/S1350-4487(00)00039-1Google Scholar
Bøtter-Jensen, L., McKeever, S.W.S. & Wintle, A.G., 2003. Optically stimulated luminescence dosimetry. Elsevier.Google Scholar
Busschers, F.S., Weerts, H.J.T., Wallinga, J., Cleveringa, P., Kasse, C., De Wolf, H. & Cohen, K.M., 2005. Sedimentary architecture and optical dating of Middle and Late Pleistocene Rhine-Meuse deposits – fluvial response to climate change, sea-level fluctuation and glaciation. Netherlands Journal of Geosciences – Geologie en Mijnbouw 84: 2541.Google Scholar
Daniels, F., Boyd, C.A. & Saunders, D.F., 1953. Thermoluminescence as a research tool. Science 117: 343349.10.1126/science.117.3040.343Google Scholar
Debenham, N., 1993. A short note on thermoluminescence dating of sediments from the Palaeolithic site Maastricht Belvedérère. Mededelingen Rijks Geologische dienst 47: 4546.Google Scholar
De Corte, F., Vandenberghe, D., Buylaert, J.-P., Van den haute, P., Kučera, J., 2006. Relative and k0-standardized INAA to assess the internal (Th,U) radiation dose rate in the ‘quartz coarse-grain protocol’ for OSL dating of sediments: Unexpected observations. Nuclear Instruments and Methods in Physics Research A 564: 743751.10.1016/j.nima.2006.04.009Google Scholar
De Jong, J., 1988. Climatic variability during the past three million years, as indicated by vegetational evolution in northwest Europe and with emphasis on data from the Netherlands. Philosophical Transactions of the Royal Society of London B318: 603617.Google Scholar
De Moor, J.J.W., Kasse, C., Van Balen, R., Vandenberghe, J., & Wallinga, J., 2007. Human and climate impact on catchment development during the Holocene – Geul River, the Netherlands. Geomorphology, doi: 10.1016/ j.geomorph.2006.12.033.Google Scholar
Dijkmans, J.W.A. & Wintle, A.G., 1991. Methodological Problems in Thermoluminescence Dating of Weichselian Coversand and Late Holocene Drift Sand from the Lutterzand Area, e Netherlands. Geologie en Mijnbouw 70: 2133.Google Scholar
Dijkmans, J.W.A., Van Mourik, J.M. & Wintle, A.G., 1992. Thermoluminescence Dating of Aeolian Sands from Polycyclic Soil Profiles in the Southern Netherlands. Quaternary Science Reviews 11: 8592.10.1016/0277-3791(92)90047-CGoogle Scholar
Duller, G.A.T., 1991. Equivalent Dose Determination Using Single Aliquots. Nuclear Tracks and Radiation Measurements 18: 371378.10.1016/1359-0189(91)90002-YGoogle Scholar
Duller, G.A.T., 1994. Luminescence Dating of Poorly Bleached Sediments from Scotland. Quaternary Science Reviews 13: 521524.10.1016/0277-3791(94)90070-1Google Scholar
Fink, T., 2000. Lumineszensdatierung eines spätglazialen und holozänen Dunenprofils bei Ossendrecht (Niederlande). Methodische Untersuchungen des Multiple und Single Aliquot-Regenerierungsprotokolls für Quartze. Diplomarbeit, Universität zu Köln.Google Scholar
Frechen, M. & Van den Berg, M.W., 2002. The coversands and timing of Late Quaternary earthquake events along the Peel Boundary Fault in the Netherlands. Geologie en Mijnbouw-Netherlands Journal of Geosciences 81: 6170.10.1017/S0016774600020564Google Scholar
Friedrich, M., Kromer, B., Spurk, M., Hofmann, J. & Kaiser, K.L., 1999. Paleo-environment and radiocarbon calibration as derived from the Lateglacial/Early Holocene tree-ring chronologies. Quaternary International 61: 2739.10.1016/S1040-6182(99)00015-4Google Scholar
Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H. & Olley, J.M., 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: Part I, experimental design and statistical models. Archaeometry 41: 339364.10.1111/j.1475-4754.1999.tb00987.xGoogle Scholar
Gibbard, P.L., West, R.G., Zagwijn, W.H., Balson, P.S., Burger, A.W., Funnell, B.M., Jeffery, D.H., Dejong, J., Vankolfschoten, T., Lister, A.M., Meijer, T., Norton, P.E.P., Preece, R.C., Rose, J., Stuart, A.J., Whiteman, C.A. & Zalasiewicz, J.A., 1991. Early and Early Middle Pleistocene Correlations in the Southern North-Sea Basin. Quaternary Science Reviews 10: 2352.10.1016/0277-3791(91)90029-TGoogle Scholar
Godfrey-Smith, D.I., Huntley, D.J. & Chen, W.H., 1988. Optical Dating Studies of Quartz and Feldspar Sediment Extracts. Quaternary Science Reviews 7: 373380.10.1016/0277-3791(88)90032-7Google Scholar
Gouw, M.J.P. & Erkens, G. 2007. Architecture of the Holocene Rhine-Meuse delta (the Netherlands) – A results of changing external controls. Netherlands Journal of Geosciences – Geologie en Mijnbouw 86: 2354.10.1017/S0016774600021302Google Scholar
Hossain, S.M., De Corte, F., Vandenberghe, D. & Van den Haute, P., 2002. A comparison of methods for the annual radiation dose determination in the luminescence dating of loess sediment. Nuclear Instruments & Methods in Physics Research Section A-Accelerators Spectrometers Detectors and Associated Equipment 490: 598613.10.1016/S0168-9002(02)01078-1Google Scholar
Houtgast, R.F., Van Balen, R.T., Kasse, C. & Vandenberghe, J., 2003. Late Quaternary tectonic evolution and postseismic near surface fault displacements along the Geleen Fault (Feldbiss fault zone – Roer Valley Rift System, the Netherlands), based on trenching. Netherlands Journal of Geosciences – Geologie en Mijnbouw 82: 177196.10.1017/S0016774600020734Google Scholar
Houtgast, R.F., Van Balen, R.T. & Kasse, C., 2005. Late Quaternary evolution of the Feldbiss Fault (Roer Valley Rift System, the Netherlands) based on trenching, and its potential relation to glacial unloading. Quaternary Science Reviews 24: 489508.10.1016/j.quascirev.2004.01.012Google Scholar
Huntley, D.J., 2006. An explanation of the power-law decay of luminescence: Journal of physics – condensed matter 18: 13591365.10.1088/0953-8984/18/4/020Google Scholar
Huntley, D.J., Godfrey-Smith, D.I. & Thewalt, M.L.W., 1985. Optical Dating of Sediments. Nature 313: 105107.10.1038/313105a0Google Scholar
Huntley, D.J. & Lamothe, M., 2001. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Canadian Journal of Earth Sciences 38: 10931106.10.1139/e01-013Google Scholar
Kasse, C., Vandenberghe, D., De Corte, F. & Van den Haute, P., 2007. Late Weichselian fluvio-aeolian sands and coversands of the type locality Grubbenvorst (southern Netherlands): sedimentary environments, climate record and age. Journal of Quaternary Sciences: DOI: 10.1002/jqs.l087.Google Scholar
Koster, E.A., 2005. Recent advances in luminescence dating of late pleistocene (cold-climate) aeolian sand and loess deposits in western Europe. Permafrost and Periglacial Processes 16: 131143.10.1002/ppp.512Google Scholar
Krbetschek, M.R., Götze, J., Dietrich, A., Trautmann, T., 1997. Spectral information from minerals relevant for luminescence dating. Radiation Measurements 27: 695748.10.1016/S1350-4487(97)00223-0Google Scholar
Krbetschek, M.R., Rieser, U., Zoller, L. & Heinicke, J., 1994. Radioactive Disequilibria in Palaeodosimetric Dating of Sediments. Radiation Measurements 23: 485489.10.1016/1350-4487(94)90083-3Google Scholar
Lamothe, M., Balescu, S. & Auclair, M., 1994. Natural IRSL Intensities and Apparent Luminescence Ages of Single Feldspar Grains Extracted from Partially Bleached Sediments. Radiation Measurements 23: 555561.10.1016/1350-4487(94)90099-XGoogle Scholar
Lamothe, M., Auclair, M., Hamzaoui, C. & Huot, S., 2003. Towards a prediction of long-term anomalous fading of feldspar IRSL. Radiation Measurements 37: 493498.10.1016/S1350-4487(03)00016-7Google Scholar
Miallier, D., Fain, J., Sanzelle, S., Daugas, J.P. & Raynal, J.P., 1983. Dating of the Butte de Clermont basaltic maar by means of the quartz inclusion method. PACT 9: 487498.Google Scholar
Murray, A.S., Olley, J.M., 1999. Determining sedimentation rates using luminescence. GeoResearch Forum 5: 121144.Google Scholar
Murray, A.S. & Olley, J.M., 2002. Precision and accuracy in the optically stimulated luminescence dating of sedimentary quartz: a status review. Geochronometria 21: 116.Google Scholar
Murray, A.S. & Roberts, R.G., 1997. Determining the burial time of single grains of quartz using optically stimulated luminescence. Earth and Planetary Science Letters 152: 163180.10.1016/S0012-821X(97)00150-7Google Scholar
Murray, A.S. & Wintle, A.G., 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32: 5773.10.1016/S1350-4487(99)00253-XGoogle Scholar
Murray, A.S. & Wintle, A.G., 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37: 377381.10.1016/S1350-4487(03)00053-2Google Scholar
Olley, J.M., Murray, A. & Roberts, R.G., 1996. The effects of disequilibria in the uranium and thorium decay chains on burial dose rates in fluvial sediments. Quaternary Science Reviews 15: 751760.10.1016/0277-3791(96)00026-1Google Scholar
Olley, J.M., Caitcheon, G.G. & Roberts, R.G., 1999. The origin of dose distributions in fluvial sediments, and the prospect of dating single grains from fluvial deposits using optically stimulated luminescence. Radiation Measurements 30: 207217.10.1016/S1350-4487(99)00040-2Google Scholar
Olley, J.M., Pietsch, T. & Roberts, R.G., 2004. Optical dating of Holocene sediments from a variety of geomorphic settings using single grains of quartz. Geomorphology 60: 337358.10.1016/j.geomorph.2003.09.020Google Scholar
Prescott, J.R. & Hutton, J.T., 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23: 497500.10.1016/1350-4487(94)90086-8Google Scholar
Prescott, J.R. & Robertson, G.B., 1997. Sediment dating by luminescence: a review. Radiation Measurements 27: 893922.10.1016/S1350-4487(97)00204-7Google Scholar
Schilder, M., Wallinga, J. & Van Mourik, J., 2006. OSL and radiocarbon dating of Late-Holocene drift-sand deposits in the southern Netherlands. In: Hoek, W.H. & Wallinga, J. (eds): NCL symposium series 4: 89.Google Scholar
Schokker, J., Cleveringa, P. & Murray, A.S., 2004. Palaeoenvironmental reconstruction and OSL dating of terrestrial Eemian deposits in the southeastern Netherlands. Journal of Quaternary Science 19: 193202.10.1002/jqs.808Google Scholar
Schokker, J., Cleveringa, P., Murray, A.S., Wallinga, J. & Westerhoff, W.E., 2005. An OSL dated Middle and Late Quaternary sedimentary record in the Roer Valley Graben (southeastern Netherlands).Quaternary Science Reviews 24: 22432264.10.1016/j.quascirev.2005.01.010Google Scholar
Schwan, J., 1991. Palaeowetness indicators in a Weuichselian Late Glacial to Holocene aeolian succession in the southwestern Netherlands. Zeitschrift für Geomorphologie, Neue Folge, Supplement-Band 90: 155169.Google Scholar
Smith, B.W., Rhodes, E.J., Stokes, S., Spooner, N.A. & Aitken, M.J., 1990. Optical Dating of Sediments – Initial Quartz Results from Oxford. Archaeometry 32: 1931.10.1111/j.1475-4754.1990.tb01078.xGoogle Scholar
Spooner, N.A., 1994. The Anomalous Fading of Infrared-Stimulated Luminescence from Feldspars. Radiation Measurements 23: 625632.10.1016/1350-4487(94)90111-2Google Scholar
Stokes, S., 1991. Quartz-Based Optical Dating of Weichselian Coversands from the Eastern Netherlands. Geologie en Mijnbouw 70: 327337.Google Scholar
Törnqvist, T.E., Wallinga, J., Murray, A.S., De Wolf, H., Cleveringa, P. & De Gans, W., 2000. Response of the Rhine-Meuse system (west-central Netherlands) to the last Quaternary glacio-eustatic cycles: a first assessment. Global and Planetary Change 27: 89111.10.1016/S0921-8181(01)00072-8Google Scholar
Törnqvist, T.E., Wallinga, J. & Busschers, F.S., 2003. Timing of the last sequence boundary in a fluvial setting near the highstand shoreline -Insights from optical dating. Geology 31: 279282.10.1130/0091-7613(2003)031<0279:TOTLSB>2.0.CO;22.0.CO;2>Google Scholar
Trautmann, T., Dietrich, A., Stolz, W. & Krbetschek, M.R., 1999. Radiolumi-nescence dating: A new tool for quaternary geology and archaeology. Naturwissenschaften 86: 441444.10.1007/s001140050649Google Scholar
Truelsen, J.L. & Wallinga, J., 2003. Zeroing of the OSL signal as a function of grain size: investigating bleaching and thermal transfer for a young fluvial sample. Geochronometria 22: 18.Google Scholar
Tsukamoto, S., Denby, P.M., Murray, A.S. & Batter-Jensen, L., 2006. Time-resolved luminescence from feldspars: new insight into fading. Radiation Measurements 41: 790795.10.1016/j.radmeas.2006.05.013Google Scholar
Van der Hammen T., 1971. The Upper Quaternary stratigraphy of the Dinkel valley. In The Upper Quaternary of the Dinkel valley, Van der Hammen T, Wijmstra TA (eds). Mededelingen Rijks Geologische Dienst N.S. 22: 8185.Google Scholar
Van Es, H.J., Den Hartog, H.W., De Meijer, R.J., Venema, L.B., Donoghue, J.F. & Rozendaal, A., 2000. Assessment of the suitability of zircons for thermoluminescence dating. Radiation Measurements 32: 819823.10.1016/S1350-4487(00)00075-5Google Scholar
Van Es, H.J., Vainshtein, D.I., Rozendaal, A., Donoghue, J.F., De Meijer, R.J. & Den Hartog, H.W., 2002. Thermoluminescence of ZrSi04 (zircon): A new dating method? Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 191: 649652.Google Scholar
Van Geel, B., Coope, G.R., Van der Hammen, T., 1989. Palaeoecology and stratigraphy of the Lateglacial type section at Usselo (the Netherlands). Review of Palaeobotany and Palynology 60: 25129.10.1016/0034-6667(89)90072-9Google Scholar
Van Heteren, S., Oost, A.P., Van der Spek, A.J.F. & Elias, E.P.L., 2006. Islandterminus evolution as a function of changing ebb-tidal-delta configuration: Texel, the Netherlands. Marine Geology 235: 1933.10.1016/j.margeo.2006.10.002Google Scholar
Van Huissteden, J., Schwan, J.C.G. & Bateman, M.D., 2001. Environmental conditions and paleowind directions at the end of the Weichselian Late Pleniglacial recorded in aeolian sediments and geomorphology (Twente, Eastern Netherlands). Geologie en Mijnbouw – Netherlands Journal of Geosciences 80: 118.Google Scholar
Vandenberghe, D., Hossain, S.M., De Corte, F. & Van den Haute, P., 2003. Investigations on the origin of the equivalent dose distribution in a Dutch coversand. Radiation Measurements 37: 433439.10.1016/S1350-4487(03)00051-9Google Scholar
Vandenberghe, D., Kasse, C., Hossain, S.M., De Corte, F., Van den Haute, P., Fuchs, M. & Murray, A.S., 2004. Exploring the method of optical dating and comparison of optical and C-14 ages of Late Weichselian coversands in the southern Netherlands. Journal of Quaternary Science 19: 7386.10.1002/jqs.806Google Scholar
Wallinga, J., Murray, A. & Wintle, A., 2000a. The single-aliquot regenerative-dose (SAR) protocol applied to coarse-grain feldspar. Radiation Measurements 32: 529533.Google Scholar
Wallinga, J., Murray, A. & Duller, G., 2000b. Underestimation of equivalent dose in single-aliquot optical dating of feldspars caused by preheating. Radiation Measurements 32: 691695.Google Scholar
Wallinga, J. & Duller, G.A.T., 2000. The effect of optical absorption on the infrared stimulated luminescence age obtained on coarse-grain feldspar. Quaternary Science Reviews 19: 10351042.10.1016/S0277-3791(99)00051-7Google Scholar
Wallinga, J., Murray, A.S., Duller, G.A.T. & Tornqvist, T.E., 2001. Testing optically stimulated luminescence dating of sand-sized quartz and feldspar from fluvial deposits. Earth and Planetary Science Letters 193: 617630.10.1016/S0012-821X(01)00526-XGoogle Scholar
Wallinga, J., Murray, A.S. & Botter-Jensen, L., 2002. Measurement of the dose in quartz in the presence of feldspar contamination. Radiation Protection Dosimetry 101: 367370.10.1093/oxfordjournals.rpd.a006003Google Scholar
Wallinga, J., Törnqvist, T.E., Busschers, F.S. & Weerts, H.J.T., 2004. Allogenic forcing of the late Quaternary Rhine-Meuse fluvial record: the interplay of sea-level change, climate change and crustal movements. Basin Research 16: 535547.10.1111/j.1365-2117.2003.00248.xGoogle Scholar
Wallinga, J., Bos, A.J.J., Dorenbos, P., Murray, A.S. & Schokker, J., 2007. A test case for anomalous fading correction in IRSL dating. Quaternary Geochronology 2: 216221.10.1016/j.quageo.2006.05.014Google Scholar
Wang, X.L., Lu, Y.C. & Wintle, A.G., 2006. Recuperated 0SL dating of fine-grained quartz in Chinese loess. Quaternary Geochronology 1: 89100.10.1016/j.quageo.2006.05.020Google Scholar
Wintle, A.G., 1973. Anomalous fading of thermoluminescence in mineral samples. Nature 245: 143144.10.1038/245143a0Google Scholar
Wintle, A.G. & Huntley, D.J., 1979. Thermoluminescence Dating of A Deep-Sea Sediment Core. Nature 279: 710712.10.1038/279710a0Google Scholar
Wintle, A.G. & Huntley, D.J., 1980. Thermo-Luminescence Dating of Ocean Sediments. Canadian Journal of Earth Sciences 17: 348360.10.1139/e80-034Google Scholar
Wintle, A.G & Murray, A.S., 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements 41: 369391.10.1016/j.radmeas.2005.11.001Google Scholar
Zagwijn, W.H., 1974. The palaeogeographic evolution of the Netherlands during the Quaternary. Geologie en Mijnbouw 53: 369385.Google Scholar
Zagwijn, W.H., 1985. An Outline of the Quaternary Stratigraphy of the Netherlands. Geologie en Mijnbouw 64: 1724.Google Scholar
Zagwijn, W.H., 1989. The Netherlands During the Tertiary and the Quaternary – A Case-History of Coastal Lowland Evolution. Geologie en Mijnbouw 68: 107120.Google Scholar