Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T13:58:14.192Z Has data issue: false hasContentIssue false

Loess in the Vojvodina region (Northern Serbia): an essential link between European and Asian Pleistocene environments

Published online by Cambridge University Press:  24 March 2014

S.B. Marković*
Affiliation:
Chair of Physical Geography, Faculty of Sciences, University of Novi Sad, Trg D. Obradovića 3, 21000 Novi Sad, Serbia
U. Hambach
Affiliation:
Chair of Geomorphology, University of Bayreuth, D-95440 Bayreuth, Germany
T. Stevens
Affiliation:
Chair of Physical Geography, Faculty of Sciences, University of Novi Sad, Trg D. Obradovića 3, 21000 Novi Sad, Serbia Centre for Quaternary Research, Department of Geography, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
M. Jovanović
Affiliation:
Chair of Physical Geography, Faculty of Sciences, University of Novi Sad, Trg D. Obradovića 3, 21000 Novi Sad, Serbia
K. O'Hara-Dhand
Affiliation:
Giotto Loess Research Group, Department of Geology, Leicester University, LE1 7RH, UK
B. Basarin
Affiliation:
Chair of Physical Geography, Faculty of Sciences, University of Novi Sad, Trg D. Obradovića 3, 21000 Novi Sad, Serbia
H. Lu
Affiliation:
School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China
I. Smalley
Affiliation:
Giotto Loess Research Group, Department of Geology, Leicester University, LE1 7RH, UK
B. Buggle
Affiliation:
Chair of Geomorphology, University of Bayreuth, D-95440 Bayreuth, Germany
M. Zech
Affiliation:
Chair of Geomorphology, University of Bayreuth, D-95440 Bayreuth, Germany Soil Physics Department, University of Bayreuth, Universitätsstr. 30, D-95440 Bayreuth, Germany
Z. Svirčev
Affiliation:
Laboratory for paleoenvironmental reconstruction, Faculty of Sciences, University of Novi Sad, Trg D. Obradovića 2, 21000 Novi Sad, Serbia
P. Sümegi
Affiliation:
Department of Geology and Palaeontology, University of Szeged, 6722, Szeged Egyetem u.2-6, Hungary
N. Milojković
Affiliation:
Chair of Physical Geography, Faculty of Sciences, University of Novi Sad, Trg D. Obradovića 3, 21000 Novi Sad, Serbia
L. Zöller
Affiliation:
Chair of Geomorphology, University of Bayreuth, D-95440 Bayreuth, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Loess deposits in the Vojvodina region, northern Serbia, are among the oldest and most complete loess-paleosol sequences in Europe to date. These thick sequences contain a detailed paleoclimatic record from the late Early Pleistocene. Based on the correlation of detailed magnetic susceptibility (MS) records from Vojvodina with the Chinese loess record and deep-sea isotope stratigraphy we here reconfirm and expand on a stratigraphic model of the Vojvodinian loess-paleosol chronostratigraphic sequence following the Chinese loess stratigraphic system.

Variations in MS, dust accumulation rates, and the intensity of pedogenesis demonstrate evidence for a Middle Pleistocene climatic and environmental transition. The onset of loess deposition in Vojvodina also indicates a direct link between dust generation in Europe and that in the interior of Eurasia since the Early Pleistocene. The youngest part of the Early Pleistocene and oldest part of the Middle Pleistocene is characterised by relatively uniform dust accumulation and soil formation rates as well as relatively high magnetic susceptibility values. In contrast, the last five interglacial-glacial cycles are characterised by sharp environmental differences between high dust accumulation rates during the glacials and low rates observed during soil development. The data presented in this study demonstrate the great potential of Vovjodina's loess archives for accurate reconstruction of continental Eurasian Pleistocene climatic and environmental evolution.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2013

References

Antoine, P., Rousseau, D.D., Zöller, L., Lang, A., Manaut, A.V., Hatté, C. & Fontugne, M., 2001. High resolution record of the last interglacial-glacial cycle in loess palaeosol sequences of Nussloch (Rhine Valley–Germany). Quaternary International 76/77: 211229.CrossRefGoogle Scholar
Antoine, P., Rousseau, D.D., Fuchs, M., Hatté, C.Gautier, C., Marković, S.B.Jovanović, M., Gaudeenyi, T., Moine, O. & Rossignol, J., 2009. High resolutionrecord of the last climatic cycle in the Southern Carpathian basin (Surduk, Vojvodina, Serbia). Quaternary International 198: 1936.CrossRefGoogle Scholar
Balescu, S., Lamothe, M., Panaiotu, E.C & Panaiotu, C., 2010. La chronologie IRSL des séquences loessiques de l'est de la Roumanie. Quaternaire 21: 115126.CrossRefGoogle Scholar
Berger, A. & Loutre, M.F., 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10: 297317.CrossRefGoogle Scholar
Berger, A. & Loutre, M.F., 2002. An exceptionally long interglacial ahead? Science 297: 12871288.Google Scholar
Bokhorst, M.P., Beets, C.J., Marković, S. B.Gerasimenko, N.P., Matviishina, Z.N. & Frechen, M., 2009. Pedo-chemical climate proxies in Late Pleistocene Serbian-Ukrainian loess sequences. Quaternary International 198: 123133.CrossRefGoogle Scholar
Bokhorst, M.P., Vandenberghe, J., Sümegi, P., Łanczont, M., Gerasimenko, N.P., Matviishina, Z.N., Beets, C.J., Markovic, S.B. & Frechen, M., 2011. Atmospheric circulation patterns in central and eastern Europe during the Weichselian Pleniglacial inferred from loess grain size records. Quaternary International 234: 6274.CrossRefGoogle Scholar
Bronger, A., 1976. Zur quartären Klima- und Landschaftsentwicklung des Karpatenbeckens auf (paläo-)pedologischer und bodengeographischer Grundlage. Kieler geographische Schriften 45, Selbstverlag des Geographischen Instituts der Universität Kiel.Google Scholar
Bronger, A., 2003. Correlation of loess-paleosol sequences in East and Central Asia with SE Central Europe – Towards a continental Quaternary pedostratigraphy and paleoclimatic history. Quaternary International 106–107: 1131.CrossRefGoogle Scholar
Bronger, A. & Heinkele, T., 1989. Micromorphology and genesis of paleosols in the Luochuan loess section, China: Pedostratigraphical and environmental implications. Geoderma 45: 123143.CrossRefGoogle Scholar
Bronger, A., Winter, R., Derevjanko, O. & Aldag, S., 1995. Loess-palaeosol sequences in Tadjikistan as a palaeoclimatic record of the Quaternary in Central Asia. Quaternary Proceedings 4: 6981.Google Scholar
Bronger, A., Winter, R. & Sedov, S., 1998. Weathering and clay mineral formation in two Holocene soils and in buried paleosols in Tadjikistan towards a Quaternary paleoclimatic record in Central Asia. Catena 34: 1934.CrossRefGoogle Scholar
Buggle, B., Glaser, B., Hambach, U., Marković, S.B.Gerasimenko, N., Glaser, I. & Zöller, L., 2008. Geochemical characterisation and provenance of southeast and east European loesses (Serbia, Romania, Ukraine). Quaternary Science Reviews 27: 10581075.CrossRefGoogle Scholar
Buggle, B., Hambach, U., Glaser, B., Gerasimenko, N., Marković, S.B.Glaser, I. & Zöller, L., 2009. Magnetic susceptibility stratigraphy and spatial and temporal paleoclimatic trends in East European loess paleosol sequences. Quaternary International 196: 86106.CrossRefGoogle Scholar
Buggle, B., Glaser, B., Hambach, U., Gerasimenko, N. & Marković, S.B., 2011. An evaluation of geochemical weathering indices in loess–paleosol studies. Quaternary International 240: 1221.CrossRefGoogle Scholar
Butrym, J., Maruszcak, H. & Zeremski, M., 1991. Thermoluminescence stratigraphy on Danubian loess in Belgrade environs. Annales Universitatis Mariae Curie-Sklodowska, sec. B 46: 5364.Google Scholar
Cande, S.C. & Kent, D.V., 1995. Revised calibration of the geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. Journal of Geophysical Resesearch 100: 60936095.CrossRefGoogle Scholar
Candy, I., Adamson, K., Gallant, C.E., Whitfield, E. & Pope, R., 2012. Oxygen and carbon isotopic composition of Quaternary meteoric carbonates from western and southern Europe: Their role in palaoenvironmental reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology 326–328: 111.CrossRefGoogle Scholar
Channell, J.E.T, Xuan, C. & Hodell, D.A., 2009. Stacking paleointensity and oxygen isotope data for the last 1.5 Myr (PISO-1500). Earth and Planetary Science Letters 283: 1423.CrossRefGoogle Scholar
Derbyshire, E., Meng, X. & Kemp, R.A., 1998. Provenance, transport and characteristics of modern aeolian dust in western Gansu Province, China, and interpretation of the Quaternary loess record: Journal of Arid Environments: 497516.Google Scholar
Ding, Z.L., Ranov, V., Yang, S. L., Finaev, A., Han, J.M. & Wang, G.A., 2002. The loess record in southern Tajikistan and correlation with Chinese loess. Earth and Planetary Science Letters 200: 387400.CrossRefGoogle Scholar
Dodonov, A.E. & Baizugina, L.L., 1985. Loess stratigraphy of Central Asia: Palaeoclimatic and palaeoenvironmental aspects. Quaternary Science Reviews 14: 707720.CrossRefGoogle Scholar
Dodonov, A.E. & Zhou, L.P., 2008. Loess deposition in Asia: its initiation and development before and during the Quaternary. Episodes 31: 222225.CrossRefGoogle Scholar
Ducić, V. & Radovanović, M., 2005. Klima Srbije. Zavod za izdavanje udžbenika, Beograd. (In Serbian with English summary).Google Scholar
Guo, Z.T., Ruddiman, W.F., Hao, Q.Z., Wu, H.B., Qiao, Y.S., Zhu, R.X., Peng, S.Z., Wei, J.J., Yuan, B.Y. & Liu, T.S., 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature 416: 159163.CrossRefGoogle ScholarPubMed
FAO, 2006. World Reference Base for Soil Resources: FAO World Soil Resource Reports 103, 145 pp. Rome.Google Scholar
Fink, L. & Kukla, G., 1977. Pleistocene climates in Central Europe: at least 17 interglacials after the Olduvai event. Quaternary Research 7: 363371.CrossRefGoogle Scholar
Fitzsimmons, K, Marković, S.B., Hambach, U., 2012. Pleistocene environmental dynamics recorded in the loess of the middle and lower Danube basin. Quaternary Science Reviews 41: 104118.CrossRefGoogle Scholar
Frechen, M., Zander, A., Zykina, V. & Boenigk, W., 2005. The loess record from the section at Kurtak in Middle Siberia. Palaeogeography, Palaeoclimatology, Palaeoecology 228: 228244.CrossRefGoogle Scholar
Frechen, M. & Dodonov, A.E., 1998. Loess chronology of the Middle and Upper Pleistocene in Tadjikistan. Geologishe Rundschau 87: 220.CrossRefGoogle Scholar
Frechen, M., Oches, E.A. & Kohfeld, K.E., 2003. Loess in Europe – Mass accumu – lation rates during OIS 2. Quaternary Science Reviews, 22: 18351857.CrossRefGoogle Scholar
Fuchs, M., Rousseau, D.D., Antoine, P., Hatte, C., Gautier, C., Marković, S.B. & Zöller, L., 2008. High resolution chonology of the upper Pleistocene loess/paleosol sequence at Surduk, Vojvodina, Serbia. Boreas 37: 6673.CrossRefGoogle Scholar
Hsaerts, P., 1990. Stratigraphical approach to the Pleistocene deposits of the Schneider quarry at Ariendorf (Middle Rhine, Germany). In: Schirmer, W. (ed.): Rheingeschichte zwischen Mosel und Maas, Deuqua-Führer 1, Deutsche Quartärvereinigung (Hannover): 112114.Google Scholar
Haesaerts, P.Borziac, I.Chekha, V.P., Chirica, V.Drozdov, N.I., Koulakovska, L., Orlova, L.A., Van der Plicht, J. & Damblon, F., 2010. Charcoal and wood remains for radiocarbon dating Upper Pleistocene loess sequences in Eastern Europe and Central Siberia. Palaeogeography, Palaeoclimatology, Palaeoecology 291: 106127.CrossRefGoogle Scholar
Hambach, U., Jovanović, M., Marković, S.B., Nowazcyk, N. & Rolf, C., 2009. The Matuyama-Brunhes geomagnetic reversal in the Stari Slankamen loess section (Vojvodina, Serbia): Its detailed record and its stratigraphic position.Geophysical Research Abstracts 11: EGU2009-0.Google Scholar
Hambach, U., Jovanović, M., Marković, S. B. & Gaudenyi, T., 2011. The Titel Loess Plateau case study: a unique European palaeoclimatic record covering the last 600 kyrs. International Workshop, 6th Loess Seminar: Climate Change in the Carpathian Balkan region during the Late Pleistocene and Holocene, Suceava, Romania, 9-12 06 2011, Abstract book: 3536.Google Scholar
Heller, F. & Evans, M.E., 1995. Loess magnetism. Reviews of Geophysics 33: 211240.CrossRefGoogle Scholar
Heller, F. & Liu, T.S., 1984. Magnetism of Chinese loess deposits. Geophysical Journal of the Royal Astronomical Society 77: 125141.CrossRefGoogle Scholar
Heller, F. & Liu, T.S., 1986. Paleoclimatic and sedimentary history from magnetic susceptibility of loess in China. Geophysical Research Letters 13: 11691172.CrossRefGoogle Scholar
Horváth, E., 2001. Marker horizons in the loess of Carpathian Basin. Quaternary International 76/77: 157163.CrossRefGoogle Scholar
Imbrie, J., Hays, J.D., Martinson, D.G., Mcintyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L., Shackleton, N.J., 1984. The orbital theory of Pleistocene climate: support from a revised chronology of the marine 18O record. In: Berger, A., Hays, J., Kukla, G., Saltzman, B. (eds): Milankovitch and Climate, Part I, Reidel (Dordrecht): 269305.Google Scholar
Jiang, F., Fu, J., Wang, S., Sun, D. & Zhao, Z., 2007. Formation of the Yellow River, inferred from loess-palaeosol sequence in Mangshan and lacustrine sediments in Sanmen Gorge, China. Quaternary International 175: 6270.CrossRefGoogle Scholar
Jordanova, D. & Petersen, N., 1999. Paleoclimatic record from a loess-soil profile in northeastern Bulgaria II. Correlation with global climatic events during the Pleistocene. Geophysical Journal International 138: 533540.CrossRefGoogle Scholar
Jordanova, D., Hus, J. & Geeraerts, R., 2007. Palaeoclimatic implications of the magnetic record from loess/palaeosol sequence Viatovo (NE Bulgaria). Geophysical Journal International 171: 10361047.CrossRefGoogle Scholar
Jordanova, D., Hus, J., Evgoliev, J. & Geeraerts, R., 2008. Paleomagnetism of the loess/paleosol sequence in Viatovo (NE Bulgaria) in the Danube Basin. Physics of the Earth and Planetary Interiors 167: 7183.CrossRefGoogle Scholar
Jovanović, M., Hambach, U., Gaudenyi, T. & Marković, S., 2011a. New results of magnetic susceptibility form Ruma-brickyard site. Comptes rendus des séances de la Société Serbe de géologie pour l'année 2008: 99108. (in Serbian with English summary).Google Scholar
Jovanović, M., Hambach, U., Gaudenyi, T., Marković, S., 2011b. Stratigraphy of Titel Loess plateau. Comptes rendus des séances de la Société Serbe de géologie pour l'année 2008: 109120. (in Serbian with English summary).Google Scholar
Kostić, N. & Protić, N., 2000. Pedology and mineralogy of loess profiles at Kapela Batajnica and Stalac. Catena 41: 217227.CrossRefGoogle Scholar
Kukla, G.J., 1970. Correlations between loesses and deep-sea sediments. Geologiska Foreningen i Stockholm Forhandlingar 92: 148180.CrossRefGoogle Scholar
Kukla, G.J., 1975. Loess stratigraphy of Central Europe. In: Butzer, K.W., Isaac, L.I. (eds): After the Australopithecines: 99187, Mouton Publishers (The Hague).CrossRefGoogle Scholar
Kukla, G.J., 1977. Pleistocene land-sea correlations. Earth Science Reviews 13: 307374.CrossRefGoogle Scholar
Kukla, G.J., 1987. Loess stratigraphy in Central China. Quaternary Science Reviews 6: 191219.CrossRefGoogle Scholar
Kukla, G.J. & An, Z.S., 1989. Loess stratigraphy in Central China. Palaeo geography, Palaeoclimatology, Palaeoecology 72: 203225.CrossRefGoogle Scholar
Lambert, F., Delmonte, B., Petit, J.R., Bigler, M., Kaufmann, P.R., Hutterliб, M.A.Stocker, T.F., Ruth, U., Steffensen, J.P. & Maggi, V., 2008. Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature 452: 616619.CrossRefGoogle Scholar
Lisiecki, L.E. & Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records, Paleoceanography 20: PA1003, doi: 10.1029/2004PA001071.Google Scholar
Liu, T.S., 1985. Loess and Environment. Beijing: China Ocean Press; 3167.Google Scholar
Liu, T.S. & Ding, Z.L., 1998. Chinese loess and the paleomonsoon. Annual Reviews of Earth and Planetary Sciences, 26: 111145.CrossRefGoogle Scholar
Liu, Q.S., Roberts, A.P., Rohling, E.J., Zhu, R.X. & Sun, Y.B., 2008. Post-depositional remanent magnetisation lock-in and the location of the Matuyama-Brunhes geomagnetic reversal boundary in marine and Chinese loess sequences. Earth and Planetary Science Letters 275: 102108.CrossRefGoogle Scholar
Lu, H.Y, Liu, X.D.Zhang, F., An, Z.S. & Dodson, J., 1999. Astronomical calibration of loess-paleosol deposits at Luochuan, central Chinese Loess Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology 154: 237246.CrossRefGoogle Scholar
Lu, H.Y., Zhang, F. & Liu, X.D., 2002. Patterns and Frequencies of the East Asian Winter Monsoon Variations during the Past Million Years Revealed by Wavelet and Spectral Analyses. Global and Planetary Change 35: 6774.CrossRefGoogle Scholar
Lu, H.Y., Zhang, F., Liu, X.D. & Duce, R., 2004. Periodicities of palaeoclimatic variations recorded by loess-paleosol sequence in China. Quaternary Science Reviews 23: 18911900.CrossRefGoogle Scholar
Lukić, T., Marković, S. B.Stevens, T., Vasiljević, Dj.A., Machalett, B., Milojković, N., Basarin, B. & Obreht, I., 2009. The loess ‘cave’ Near the village of Surduk – An unusual pseudokarst landform in the loess of Vojvodina, Serbia, Acta Carsologica 38: 227235.CrossRefGoogle Scholar
Maher, B.A. & Thompson, R., (eds), 1999. Quaternary Climates, Environment and Magnetism. Cambridge University Press (Cambridge), 390 pp.CrossRefGoogle Scholar
Maher, B.A., Thompson, R. & Zhou, L.P., 1994. Spatial and temporal reconstructions of changes in the Asian palaeomonsoon: a new mineral magnetic approach. Earth and Planetary Science Letters 125: 461471.CrossRefGoogle Scholar
Maher, B.A., Alekseev, B. & Alekseeva, T., 2002. Variation of soil magnetism across the Russian steppe: its significance for use of soil magnetism as a palaeorainfall proxy. Quaternary Science Reviews 21: 15711576.CrossRefGoogle Scholar
Machalett, B., Oches, E.A., Frechen, M., Zöller, L., Hambach, U., Mavlyanova, N. G., Marković, S.B. & Endlicher, W., 2008. Aeolian dust dynamics in Central Asia during the Pleistocene – driven by the long-term migration, seasonality and permanency of the Asiatic polar front. Geophysics, Geochemistry and Geosystems 9: Q08Q09, doi: 10.1029/2007GC001938.CrossRefGoogle Scholar
Marković, S.B., Heller, F., Kukla, G.J., Gaudenyi, T., Jovanović, M. & Miljković, Lj., 2003. Magnetostratigrafija lesnog profila Čot u Starom Slankamenu. Zbornik radova Departmana za geografiju 32: 2028.Google Scholar
Marković, S.B., Kostic, N. & Oches, E.A., 2004a. Paleosols in the Ruma loess section. Revista Mexicana de Ciencias Geológicas 21: 7987.Google Scholar
Marković, S.B.Oches, E.A., Jovanović, M., Gaudenyi, T., Hambach, U., Zöller, L., Sümegi, P., 2004b. Paleoclimate record in the Late Pleistocene loess-paleosol sequence at Miseluk (Vojvodina, Serbia). Quaternaire 15: 361368.CrossRefGoogle Scholar
Marković, S.B.McCoy, W.D., Oches, E.A., Savić, S., Gaudenyi, T., Jovanović, M., Stevens, T., Walther, R., Ivanišević, P. & Galić, Z., 2005. Paleoclimate record in the Late Pleistocene loess-paleosol sequence at Petrovaradin Brickyard (Vojvodina, Serbia). Geologica Carpathica 56: 483491.Google Scholar
Marković, S.B.Oches, E., Sümegi, P., Jovanović, M. & Gaudenyi, T., 2006. An introduction to the Upper and Middle Pleistocene loess-paleosol sequences of Ruma section (Vojvodina, Serbia). Quaternary International 149: 8086.CrossRefGoogle Scholar
Marković, S.B., Oches, E.A., McCoy, W.D., Gaudenyi, T. & Frechen, M., 2007. Malacological and sedimentological evidence for ‘warm’ climate from the Irig loess sequence (Vojvodina, Serbia). Geophysics, Geochemistry and Geosystems 8, Q09008, DOI: 10.1029/2006GC001565.CrossRefGoogle Scholar
Marković, S.B.Bokhorst, M, Vandenberghe, J., Oches, E.A., Zöller, L., McCoy, W.D., Gaudenyi, T., Jovanović, M., Hambach, U. & Machalett, B., 2008. Late Pleistocene loess-paleosol sequences in the Vojvodina region, North Serbia. Journal of Quaternary Science 23: 7384.CrossRefGoogle Scholar
Marković, S.B., Smalley, I.J., Hambach, U. & Antoine, P., 2009a. Loess in the Danube region and surounding loess provinces: The Marsigli memorial volume. Quaternary International 198: 56.CrossRefGoogle Scholar
Marković, S.B.Hambach, U., Catto, N., Jovanović, M., Buggle, B., Machalett, B., Zöller, L., Glaser, B. & Frechen, M., 2009b. The middle and late Pleistocene loess-paleosol sequences at Batajanica, Vojvodina, Serbia. Quaternary International 198: 255266.CrossRefGoogle Scholar
Marković, S.B., Hambach, U., Stevens, T., Kukla, G.J., Heller, F., William, D., McCoy, W.D., Oches, E.A., Buggle, B. & Zöller, L., 2011. The last million years recorded at the Stari Slankamen loess-palaeosol sequence: revised chronostratigraphy and long-term environmental trends. Quaternary Science Reviews 30: 11421154.CrossRefGoogle Scholar
Marsigli, A.F., 1726. Danubius Pannonico Mysicus. P. Grosse, Chr. Alberts, P de Hoodt Haga, Herm. Uytwert and Franc Changuion Amsterdamus.Google Scholar
Muhs, D.R., 2007. Loess deposits, origins, and properties, In: Elias, S. (ed.): The Encyclopedia of Quaternary Sciences: Amsterdam: Elsevier: 14051418.CrossRefGoogle Scholar
Muray, A.S. & Wintle, A.G., 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements 41: 369391.Google Scholar
Oches, E.A. & McCoy, W.D., 2001. Historical developments and recent advances in amino acid geochronology applied to loess research: examples from North America, Europe and China. Earth Science Reviews 54: 173192.CrossRefGoogle Scholar
Paillard, D., Labeyrie, L. & Yiou, P., P., , 1996. Macintosh Program performs time-series analysis. Eos Transactions, AGU 77/39, pp. 379.Google Scholar
Panaiotu, C.G., Panaiotu, C.E., Grama, A. & Necula, C., 2001. Paleoclimatic record from a loess-paleosol profile in southeastern Romania. Physics and Chemistry of the Earth (A) 26: 893898.CrossRefGoogle Scholar
Porter, S.C., 2001. Chinese loess record of monsoon climate during the last glacial-interglacial cycle. Earth-Science Reviews 54: 115128.CrossRefGoogle Scholar
Prins, M.A., Vriend, M., Nugteren, G., Vandenberghe, J., Lu, H., Zheng, H. & Weltje, G.J., 2007. Late Quaternary aeolian dust flux variability on the Chinese Loess Plateau: Inferences from unmixing of loess grain-size records. Quaternary Science Reviews 26: 230242.CrossRefGoogle Scholar
Prins, M.A., Zheng, H., Beets, C.J., Troelstra, S.R., Bacon, P., Kamerling, I., Wester, W., Konert, M., Huang, X., Ke, W. & Vandenberghe, J., 2009. Dust supply from river floodplains: the case of the lower Huang He (Yellow River) recorded in a loess-paleosol sequence from the Mangshan Plateau. Journal of Quaternary Sciences 24: 7584.CrossRefGoogle Scholar
Roberts, H.M., 2008. The development and application of luminescence dating to loess deposits: a perspective on the past, present and future. Boreas 37: 483507.CrossRefGoogle Scholar
Sartori, M., Heller, F., Forster, T., Borkovec, M., Hammann, J. & Vincent, E., 1999. Magnetic properties of loess grain size fractions from the section at Paks (Hungary). Physics of the Earth and Planetary Interiors 116: 5364.CrossRefGoogle Scholar
Schmidt, E., Machalett, B., Marković, S.B., Tsukamoto, S. & Frechen, M., 2010. Luminescence chronology of the upper part of the Stari Slankamen loess sequence (Vojvodina, Serbia). Quaternary Geochronology 5: 137142.CrossRefGoogle Scholar
Schmidt, E., Stevens, T., Marković, S.B., Tsukamoto, S. & Frechen, M., under review. Elevated temperature IRSL dating of the lower part of the Stari Slankamen loess sequence (Vojvodina, Serbia) – investigating the saturation behaviour of the pIRIR290 signal. Quaternary Geochronology.Google Scholar
Singhvi, A.K., Bronger, A., Sauer, W. & Pant, R.K., 1989. Thermoluminescence dating of loess-paleosol sequences in the Carpathian basin (East-Central Europe): A suggestion for a revised chronology. Chemical Geology 73: 307317.Google Scholar
Spassov, S., Heller, F., Evans, M.E., Yue, L.P. & Von Dobeneck, T., 2003. A lock-in model for the complex Matuyama-Brunhes boundary record of the loess-palaeosol sequence at Lingtai (Central Chinese Loess Plateau). Geophysical Journal International 155: 350366.CrossRefGoogle Scholar
Smalley, I.J. & Leach, J.A., 1978. The origin and distribution of the loess in the Danube basin and associated regions of East-Central Europe e a review. Sedimentary Geology 21: 126.CrossRefGoogle Scholar
Smalley, I., O'Hara-Dhand, K., Wint, J., Machalett, B., Jary, Z. & Jefferson, I., 2009. Rivers and loess: The significance of long river transportation in the complex event-sequence approach to loess deposit formation. Quaternary International 198: 718.CrossRefGoogle Scholar
Smalley, I.J., Marković, S.B. & Svirčev, Z., 2011. Loess is (almost totally formed by) the accumulation of dust. Quaternary International 240: 411.CrossRefGoogle Scholar
Stevens, T., Thomas, D.S.G, Armitage, S.J., Lunn, H.R. & Lu, H., 2007. Reinterpreting climate proxy records from late Quaternary Chinese loess: a detailed OSL investigation. Earth-Science Reviews 80: 111136.CrossRefGoogle Scholar
Stevens, T., Lu, H., Thomas, D.S.G & Armitage, S.J., 2008. Optical dating of abrupt shifts in the Late Pleistocene East Asian monsoon. Geology 36: 415418.CrossRefGoogle Scholar
Stevens, T., Palk, C., Carter, A., Lu, H. & Clift, P.D., 2010. Assessing the provenance of loess and desert sediments in northern China using U-Pb dating and morphology of detrital zircons. GSA Bulletin 122: 13311344.CrossRefGoogle Scholar
Stevens, T., Marković, S. B.Zech, M., Hambach, U. & Sümegi, P., 2011. Dust deposition and climate in the Carpathian Basin over an independently dated last glacial-interglacial cycle. Quaternary Science Reviews 30: 662681.CrossRefGoogle Scholar
Thiel, C., Buylaert, J.P., Murray, A., Terhorst, B., Hofer, I., Tsukamoto, S. & Frechen, M., 2011. Luminescence dating of the Stratzing loess profile (Austria) – Testing the potential of an elevated temperature post-IR IRSL protocol. Quaternary International 234: 2331.CrossRefGoogle Scholar
Vandenberghe, J. & Nugteren, G., 2001. Rapid changes in loess successions. Global and Planetary Change 28: 19.CrossRefGoogle Scholar
Vandenberghe, J., An, Z., Nugteren, G., Lu, H. & Van Huissteden, C., 1997. A new absolute timescale for the Quaternary climate in the Chinese loess region based on grain size analysis. Geology 25: 3538.2.3.CO;2>CrossRefGoogle Scholar
Vidić, N., Singer, M. J. & Versoub, K.L., 2004. Duration dependance of magnetic susceptibility enhancement in Chinese loess-paleosols of the past 620 ky. Palaeogeography, Palaeoclimatology, Palaeoecology 211: 271288.CrossRefGoogle Scholar
Wacha, L. & Frechen, M., 2011. The geochronology of the ‘Gorjanović loess section’ in Vukovar, Croatia. Quaternary International 240: 8799.CrossRefGoogle Scholar
Ujvari, G., Kovacs, J., Varga, Gy., Raucsik, B. & Marković, S.B., 2010. Dust flux estimates for the Last Glacial Period in East Central Europe based on terrestrial records of loess deposits a review. Quaternary Science Reviews 29: 31573166.CrossRefGoogle Scholar
Ujvari, G., Varga, A., Ramos, F.C., Kovacs, J., Nemeth, T., Stevens, T., 2012. Evaluating the use of clay mineralogy, Sr-Nd isotopes and zircon U-Pb ages in tracking dust provenance: An example from loess of the Carpathian Basin. Chemical Geology 304305, 83-96.Google Scholar
Yu, Z.W. & Ding, Z.L., 1998., An automatic orbital tuning method for paleoclimate records. Geophysical Research Letters 25: 45254528.CrossRefGoogle Scholar
Zech, M., Buggle, B., Leiber, K., Marković, S., Glaser, B., Hambach, U., Huwe, B., Stevens, T., Sümegi, P., Wiesenberg, G. & Zöller, L., 2009: Reconstructing Quaternary vegetation history in the Carpathian Basin, SE Europe, using n-alkane biomarkers as molecular fossils: problems and possible solutions, potential and limitations. Eiszeitalter und Gegenwart. Quaternary Science Journal 58: 148155.Google Scholar
Zeeden, C., Hark., , M., , Hambach, U., Marković, S.B. & Zöller, L., 2007. Depressions on the Titel loess Plateau: Form – Pattern – Genesis. Geographica Pannonica 11: 48.CrossRefGoogle Scholar
Zheng, H., Huang, X., Ji, J., Liu, R., Zeng, Q. & Jiang, F., 2006. Ultra-high rates of loess sedimentation at Zhengzhou since Stage 7: implication for the Yellow River erosion of the Sanmen Gorge. Geomorphology 85: 131142.CrossRefGoogle Scholar
Zhou, L.P. & Shackleton, N.P., 1999. Misleading positions of geomagnetic reversal boundaries in Eurasian loess and implications for correlation between continental and marine sediment sequences. Earth and Planetary Science Letters 168: 117130.CrossRefGoogle Scholar
Zhu, R.X., Liu, Q.S., Pan, Y.X., Deng, C.L., Zhang, R. & Wang, X.F., 2006. No apparent lock-in depth of the Laschamp geomagnetic excursion: Evidence from the Malan loess. Science in China Series D: Earth Sciences 49: 960967.CrossRefGoogle Scholar