Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-20T06:23:35.143Z Has data issue: false hasContentIssue false

A Lateglacial palaeosol cover in the Altdarss area, southern Baltic Sea coast (northeast Germany): investigations on pedology, geochronology and botany

Published online by Cambridge University Press:  01 April 2016

K. Kaiser*
Affiliation:
University of Marburg, Dept. of Geography, Deutschhausstrasse 10, D-35032 Marburg, Germany.
A. Barthelmes
Affiliation:
University of Greifswald, Dept. of Botany, Grimmer Strasse 88, D-17487 Greifswald, Germany.
S. Czakó Pap
Affiliation:
University of Greifswald, Dept. of Geography, Jahnstrasse 16, D-17487 Greifswald, Germany.
A. Hilgers
Affiliation:
University of Köln, Dept. of Geography, Albertus-Magnus-Platz, D-50923 Köln, Germany.
W. Janke
Affiliation:
University of Greifswald, Dept. of Geography, Jahnstrasse 16, D-17487 Greifswald, Germany.
P. Kühn
Affiliation:
University of Tübingen, Dept. of Physical Geography, Rümelinstrasse 19-21, D-72070 Tübingen, Germany.
M. Theuerkauf
Affiliation:
University of Greifswald, Dept. of Botany, Grimmer Strasse 88, D-17487 Greifswald, Germany.
*
*Corresponding author. Email:[email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A new site with Lateglacial palaeosols covered by 0.8 - 2.4 m thick aeolian sands is presented. The buried soils were subjected to multidisciplinary analyses (pedology, micromorphology, geochronology, dendrology, palynology, macrofossils). The buried soil cover comprises a catena from relatively dry (’Nano’-Podzol, Arenosol) via moist (Histic Gleysol, Gleysol) to wet conditions (Histosol). Dry soils are similar to the so-called Usselo soil, as described from sites in NW Europe and central Poland. The buried soil surface covers ca. 3.4 km2. Pollen analyses date this surface into the late Allerød. Due to a possible contamination by younger carbon, radiocarbon dates are too young. OSL dates indicate that the covering by aeolian sands most probably occurred during the Younger Dryas. Botanical analyses enables the reconstruction of a vegetation pattern typical for the late Allerød. Large wooden remains of pine and birch were recorded.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2006

References

AG Boden, 1994. Bodenkundliche Kartieranleitung (4th edition) Schweizer-bart’sche Verlagsbuchhandlung (Hannover): 392 pp.Google Scholar
Aitken, M.J., 1998. An introduction to optical dating - The dating of Quaternary sediments by the use of photon-stimulated luminescence. Oxford University Press (Oxford): 267 pp.CrossRefGoogle Scholar
Alaily, F. & Brande, A., 2004. Soil association in the surroundings of oligotrophic mires in the Berlin region. International Peat Journal 12: 21–31.Google Scholar
Billwitz, K., 1997. Überdünte Strändwalle und Dünen und ihr geoökologisches Inventar an der vorpommerschen Ostseeküste. Zeitschrift für Geomorphologie N.F., Supplement 111: 161–173.Google Scholar
Bittmann, F. & Pasda, C., 1999. Die Entwicklung einer Düne während der letzten 12000 Jahre - Untersuchungsergebnisse von Groß Lieskow (Stadt Cottbus) in der Niederlausitz. Quartär 49/50: 39–54.Google Scholar
Björck, S.M., Walker, J.C., Cwynar, L.C., Johnsen, S., Knudsen, K.-L., Lowe, J.J., Wohlfarth, B. & INTIMATE Members, 1998. An event stratigraphy for the Last Termination in the North Atlantic region based on the Greenland ice-core record: A proposal by the INTIMATE group. Journal of Quaternary Science 13: 283–292.Google Scholar
Bogen, C., Hilgers, A., Kaiser, K., Kühn, P. & Lidke, G., 2003. Archäologie, Pedologie und Geochronologie spätpaläolithischer Fundplätze in der Ueckermünder Heide (Kr. Uecker-Randow, Mecklenburg-Vorpommern). Archäologisches Korrespondenzblatt 33: 1–20.Google Scholar
Borowka, R.K., Gonera, P., Kostrzewski, A., Nowaczyk, B. & Zwolinski, Z., 1986. Stratigraphy of eolian deposits in Wolin Island and the surrounding area, North-West Poland. Boreas 15: 301–309.Google Scholar
Borowka, R.K., Belczynska, A. & Tomkowiak, J., 1999. Cechy morfologiczne i wybrane wlasciwosci chemiczne gleb kopalnych rozwinietych na piaskach eolicznych w okolicach Swietoujscia i Grodna. In: Borowka, R.K., Mlynarczyk, Z. & Wojciechowski, A. (eds): Ewolucja geosystemow nadmorskich poludniowego Baltyku. Bogucki Wydawnictwo Naukowe (Poznan-Szczecin): 37–42.Google Scholar
Bos, J.A.A., Bohncke, S.J.P. & Janssen, C.R., 2006. Lake-level fluctuations and small-scale vegetation patterns during the late glacial in The Netherlands. Journal of Paleolimnology 35: 211–238.Google Scholar
Brande, A., 1995. Moorgeschichtliche Untersuchungen im Spandauer Forst (Berlin). Schriftenreihe für Vegetationskunde 27: 249–255.Google Scholar
Bussemer, S., Gärtner, P. & Schlaak, N., 1998. Stratigraphie, Stoffbestand und Reliefwirksamkeit der Flugsande im brandenburgischen Jungmoränenland. Petermanns Geographische Mitteilungen 142: 115–125.Google Scholar
Czakó Pap, S., 2003. Geomorphologisch-bodenkundliche Untersuchungen an einer begrabenen Landoberflache des Spätglazials auf dem Altdarss (Vorpommern). Diploma thesis, University of Greifswald, Dept. of Geography: 47 pp.Google Scholar
De Klerk, P., 2002. Changing vegetation patterns in the Endinger Bruch area (Vorpommern, NE Germany) during the Weichselian Lateglacial and Early Holocene. Review of Palaeobotany and Palynology 119: 275–309.Google Scholar
DIN V 4019–100, 1996. Baugrund. Setzungsberechnungen Teil 100: Berechnung nach dem Konzept mit Teilsicherheitsbeiwerten. Berlin.Google Scholar
Dücker, A. & Maarleveld, G.C., 1957. Hoch- und spätglaziale äolische Sande in Nordwestdeutschland und in den Niederlanden. Geologisches Jahrbuch 73: 215–234.Google Scholar
Ellenberg, H., 1992. Zeigerwerte von Pflanzen in Mitteleuropa (2nd edition). Goltze (Göttingen): 258 pp.Google Scholar
Faegri, K. & Iversen, J., 1989. Textbook of pollenanalysis (4th edition). Wiley (Chichester): 328 pp.Google Scholar
Firbas, F., 1949. Spät- und nacheiszeitliche Waldgeschichte Mitteleuropas nördlich der Alpen. 1. Band: Allgemeine Waldgeschichte. Fischer (Jena): 480 pp.Google Scholar
Frahm, J.-P. & Frey, W., 1992. Moosflora (3rd edition). Ulmer (Stuttgart): 528 pp.Google Scholar
Friedrich, M., Knipping, M., van der Kroft, P., Renno, A., Schmidt, S., Ullrich, O. & Vollbrecht, J., 2001. Ein Wald am Ende der letzten Eiszeit. Untersuchungen zur Besiedlungs-, Landschafts- und Vegetationsentwicklung an einem verlandeten See im Tagebau Reichwalde, Niederschlesischer Oberlausitzkreis. Arbeits- und Forschungsberichte zur sächsischen Bodendenkmalpflege 43: 21–94.Google Scholar
Fukarek, F., 1961. Die Vegetation des Darss und ihre Geschichte. Fischer (Jena): 321 pp.Google Scholar
Geologischer Dienst Schwerin, 1957. Geologische Karte 1:100.000, Blatt Stralsund-Bergen-Barth. Schwerin.Google Scholar
Görsdorf, J. & Kaiser, K., 2001. Radiokohlenstoffdaten aus dem Spätpleistozän und Frühholozän von Mecklenburg-Vorpommern. Meyniana 53: 91–118.Google Scholar
Hijszeler, G.C.W.J., 1957. Late-glacial human cultures in the Netherlands. Geologie en Mijnbouw 19: 288–302.Google Scholar
Hilgers, A., 2006. The chronology and reconstruction of Late Glacial and Holocene dune development in the European sand belt - based on luminescence dating results from Germany and Poland. PhD thesis, University of Köln.Google Scholar
Hilgers, A., Murray, A.S., Schlaak, N. & Radtke, U., 2001. Comparison of Quartz OSL protocols using Late Glacial and Holocene dune sands from Brandenburg, Germany. Quaternary Science Reviews 20: 731–736.Google Scholar
Hoek, W.Z., 1997. Palaeogeography of Lateglacial vegetations. Aspects of Lateglacial and Early Holocene vegetation, abiotic landscape, and climate in the Netherlands. PhD thesis, Vrije Universiteit Amsterdam, Elinkwijk (Utrecht): 147 pp.Google Scholar
ISSS-ISRIC-FAO, 1998. World reference base for soil resources. FA0, World Soil Resources Report 84 (Rome): 91 pp.Google Scholar
Jacobson, G.L. & Bradshaw, R.H., 1981. The selection of sites for palaeovegetational studies. Quaternary Research 16: 80–96.Google Scholar
Jankowski, M., 2002. Buried soils of the Torun Basin. In: Manikowska, B., Konecka-Betley, K. & Bednarek, R. (eds): Paleopedology problems in Poland. Lodzkie Towarzystwo Naukowe (Lodz): 233–252.Google Scholar
Kaffke, A. & Kaiser, K., 2002. Das Pollendiagramm ’Prerower Torfmoor’ auf dem Darss (Mecklenburg-Vorpommern): neue Ergebnisse zur holozänen Biostratigraphie und Landschaftsgeschichte. Meyniana 54: 89–112.Google Scholar
Kaiser, K., 2001. Die spätpleistozäne bis frühholozäne Beckenentwicklung in Mecklenburg-Vorpommern - Untersuchungen zur Stratigraphie, Geomorphologie und Geoarchäologie. Greifswalder Geographische Arbeiten 24: 1–208.Google Scholar
Kaiser, K., 2004. Geomorphic characterization of the Pleistocene-Holocene transition in Northeast Germany. In: Terberger, T. & Eriksen, B.V. (eds): Hunters in a changing world. Environment and archaeology of the Pleistocene-Holocene transition (ca. 11000 - 9000 B.C.) in Northern Central Europe. Leidorf (Rhaden/Westf.): 53–73.Google Scholar
Kaiser, K. & Clausen, I., 2005. Palaeopedology and stratigraphy of the Late Palaeolithic Alt Duvenstedt site, Schleswig-Holstein (Northwest Germany). Archäologisches Korrespondenzblatt 35: 1–20.Google Scholar
Kaiser, K., Endtmann, E. & Janke, W., 2000. Befunde zur Relief-, Vegetations-und Nutzungsgeschichte an Ackersöllen bei Barth, Lkr. Nordvorpommern. Bodendenkmalpflege in Mecklenburg-Vorpommern 47: 151–180.Google Scholar
Kasse, C., 1999. Late Pleniglacial and Late Glacial aeolian phases in the Netherlands. GeoArchaeoRhein 3: 61–82.Google Scholar
Kolstrup, E. & Jørgensen, J.B., 1982. Older and Younger Coversand in southern Jutland (Denmark). Bulletin of the Geological Society of Denmark 30: 71–77.Google Scholar
Koster, E.A., 2005. Recent advances in luminescence dating of Late Pleistocene (cold-climate) aeolian sand and loess deposits in Western Europe. Permafrost and Periglacial Processes 16: 131–143.Google Scholar
Kowalkowski, A., Nowaczyk, B. & Okuniewska-Nowaczyk, I., 1999. Chronosequence of biogenic deposits and fossil soils in the dune near Jasien, Western Poland. GeoArchaeoRhein 3: 107–125.Google Scholar
Krbetschek, M.R., Rieser, U., Zöller, L. & Heinicke, J., 1994. Radioactive disequilibria in palaeodosimetric dating of sediments. Radiation Measurements 23: 485–489.Google Scholar
Kühn, P., 2003. Spätglaziale und holozäne Lessivégenese auf jungweichselzeitlichen Sedimenten Deutschlands. Greifswalder Geographische Arbeiten 28: 1–167.Google Scholar
Lampe, R., 2005. Lateglacial and Holocene water-level variations along the NE German Baltic Sea coast - review and new results. Quaternary International 133-134: 121–136.Google Scholar
Lampe, R. & Janke, W., 2004. The Holocene sea level rise in the Southern Baltic as reflected in coastal peat sequences. Polish Geological Institute Special Papers 11: 19–30.Google Scholar
Lemke, W., 1998. Sedimentation und paläogeographische Entwicklung im westlichen Ostseeraum (Mecklenburger Bucht bis Arkonabecken) vom Ende der Weichselvereisung bis zur Litorinatransgression. Meereswissenschaftliche Berichte 31: 1–156.Google Scholar
Litt, T., Brauer, A., Goslar, T., Merkt, J., Balaga, K., Müller, H., Ralska-Jasiewiczowa, M., Stebich, M. & Negendank, J.F.W., 2001. Correlation and synchronisation of Lateglacial continental sequences in northern central Europe based on annually laminated lacustrine sediments. Quaternary Science Reviews 20: 1233–1249.CrossRefGoogle Scholar
Lorenz, S., 2006. Die spätpleistozäne und holozäne Gewässernetzentwicklung im Bereich der Pommerschen Haupteisrandlage Mecklenburgs. PhD thesis, University of Greifswald.Google Scholar
Ludwig, A.O., 2002. Die spätglaziale Entwicklung im östlichen Küstengebiet Mecklenburgs (Rostocker Heide, Fischland). Greifswalder Geographische Arbeiten 26: 83–86.Google Scholar
Manikowska, B., 1991. Vistulian and Holocene aeolian activity, pedostratigraphy and relief evolution in Central Poland. Zeitschrift fur Geomorphologie N.F., Supplement 90: 131–141.Google Scholar
Mol, J., 1997. Fluvial response to Weichselian climate changes in the Niederlausitz (Germany). Journal of Quaternary Science 12: 43–60.Google Scholar
Murray, A.S. & Wintle, A.G., 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32: 57–73.Google Scholar
Oberdorfer, E., 1994. Pflanzenökologische Exkursionsflora (7th edition). Ulmer (Stuttgart): 1050 pp.Google Scholar
Pasda, C., 2002. Archäologie einer Düne im Baruther Urstromtal bei Groß Lieskow, Stadt Cottbus. Veröffentlichungen des Brandenburgischen Landesmuseums für Ur- und Frühgeschichte 33: 7–49.Google Scholar
Roeschmann, G., Ehlers, J., Meyer, B. & Rohdenburg, H., 1982. Paläoböden in Niedersachsen, Bremen und Hamburg. Geologisches Jahrbuch F 14: 255–309.Google Scholar
Schirmer, W., 1999. Dune phases and soils in the European sand belt. GeoArchaeoRhein 3: 11–42.Google Scholar
Schlaak, N., 1998. Der Finowboden - Zeugnis einer begrabenen weichselspätglazialen Oberfläche in den Dünengebieten Nordostbrandenburgs. Münchener Geographische Abhandlungen, Reihe A 49: 143–148.Google Scholar
Schlichting, E., Blume, H.-P. & Stahr, K., 1995. Bodenkundliches Praktikum (2nd edition). Blackwell (Berlin, Wien): 295 pp.Google Scholar
Schweingruber, F.H., 1990. Anatomie europäischer Hülzer. Haupt (Bern, Stuttgart): 800 pp.Google Scholar
Spurk, M., Kromer, B. & Peschke, P., 1999. Dendrochronologische, palynologische und Radiokarbon-Untersuchungen eines Waldes aus der Jüngeren Tundrenzeit. Quartär 49/50: 34–38.Google Scholar
Stapert, D. & Veenstra, H.J., 1988. The section at Usselo; brief description, grain-size distributions, and some remarks on the archaeology. Palaeohistoria 30: 1–28.Google Scholar
Stoops, G., 2003. Guidelines for analysis and description of soil and regolith thin sections (Madison): 184 pp.Google Scholar
Stuiver, M. & Reimer., P.J., 2005. Radiocarbon calibration program CALIB Rev 5.0.1 (Washington).Google Scholar
Süβ, H., 1968. Karpologische Fossilien aus dem Spaätglazial der Rostocker Heide. Palaeontographica B 123: 237–242.Google Scholar
Terberger, T., de Klerk, P., Helbig, H., Kaiser, K. & Kühn, P., 2004. Late Weichselian landscape development and human settlement in Mecklenburg-Vorpommern (NE Germany). Eiszeitalter und Gegenwart 54: 138–175.Google Scholar
Tipping, R., Long, D., Carter, S., Davidson, D., Tyler, A. & Boag, B., 1999. Testing the potential of soil-stratigraphic palynology in podsols. In: Pollard, A.M. (ed.): Geoarchaeology: exploration, environments, resources. Geological Society, Special Publications 165 (London): 79–90.Google Scholar
Turney, C.S.M., Coope, G.R., Harkness, D.D., Lowe, J.J. & Walker, M.J.C., 2000. Implications for the dating of Wisconsinan (Weichselian) Late-Glacial events of systematic radiocarbon age differences between terrestrial plant macrofossils from a site in SW Ireland Quaternary Research 53: 114–121.Google Scholar
Van Geel, B., Coope., G.R. & Van der Hammen, T., 1989. Palaeoecology and stratigraphy of the late glacial type section at Usselo (the Netherlands). Review of Palaeobotany and Palynology 60: 25–129.Google Scholar
Vandenberghe, D., Kasse, C., Hossain, S.M., De Corte, F., Van den Haute, P., Fuchs, M. & Murray, A.S., 2004. Exploring the method of optical dating and comparison of optical and 14C ages of Late Weichselian coversands in the southern Netherlands. Journal of Quaternary Science 19: 73–86.CrossRefGoogle Scholar
Wohlfarth, B., Possnert, G., Skog, G. & Holmquist, B., 1998. Pitfalls in the AMS radiocarbon-dating of terrestrial macrofossils. Journal of Quaternary Science 13: 137–145.Google Scholar
Zeeberg, J., 1998. The European sand belt in eastern Europe - and comparison of Late Glacial dune orientation with GCM simulation results. Boreas 27: 127–139.Google Scholar