Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T01:13:33.820Z Has data issue: false hasContentIssue false

Late Saalian and Eemian deposits in the Amsterdam glacial basin

Published online by Cambridge University Press:  01 April 2016

Wim de Gans*
Affiliation:
Netherlands Institute of Applied Geoscience - TNO - National Geological Survey P.O. Box 80015, 3508 TA UTRECHT, the Netherlands
Dirk J. Beets
Affiliation:
Netherlands Institute of Applied Geoscience - TNO - National Geological Survey P.O. Box 80015, 3508 TA UTRECHT, the Netherlands
Maria Carla Centineo
Affiliation:
Netherlands Institute of Applied Geoscience - TNO - National Geological Survey P.O. Box 80015, 3508 TA UTRECHT, the Netherlands
*
1Corresponding author; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

During its maximum extension, the Saalian ice cap reached into the central Netherlands, where glacier tongues excavated over 100 m deep basins in the unconsolidated Middle and Early Pleistocene sediments. The basins are filled by relatively thick successions of Late Saalian, Eemian and Weichselian sediments. The fill of the Amsterdam glacial basin is among the best known and studied in the Netherlands. The Late Saalian sediments consist mainly of warves and ill-bedded clays and silts with, along its southern margin, influxes of sands from the surrounding ice-pushed ridges. During deposition of these sediments, the Amsterdam basin formed part of a large lake extending into the present North Sea. Draining of this lake at the end of the Late Saalian left small, shallow pools at the site of the glacial basins.

Late Saalian and Eemian sediments are probably separated by a short break, although sedimentation may have been continuous in the deepest part of the basin. The Eemian deposits consist in main lines of a thin, diatom-rich sapropel at the base, overlain by an up to 30 m thick clay-rich sequence covered by a wedge of sand that measures more than 20 m in the northern part of the basin and that peters out southwards. As appears from the fauna, most of the clays were deposited in a lagoonal setting shielded behind a threshold and/or barrier. The rate of sediment supply was low so that lagoonal conditions were maintained over a long timespan. Sands derived from the surrounding ice-pushed ridges and transported by longshore drift and tidal currents formed a spit at the northern margin of the basin, which moved southward after eustatic sea-level rise stabilized and the lagoon was filled by clay. Loading of this clay-rich sequence by the spit and its washover fans induced subsidence, however, because of compaction, so that marine conditions were maintained until after the Eemian highstand. Fluvial and eolian sediments of Weichselian age, locally reaching a thickness of almost 10 m, eventually levelled the Amsterdam glacial basin.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2000

Footnotes

3 Present address: Dipartimento di Scienze della Terra e Geo-Ambientali, Università di Bologna, Via Zamboni 67, 40127 BOLOGNA, Italy

References

Beets, D.J. & Van der Spek, A.J.F., 2000. The Holocene evolution of the barrier and back-barrier basins of Belgium and the Netherlands as a function of late Weichselian morphology, relative sealevel rise and sediment supply. Geologie en Mijnbouw / Netherlands Journal of Geosciences 79: 316.Google Scholar
Cleveringa, P., Meijer, T., Van Leeuwen, R.J.W., De Wolf, F., Pouwer, R., Lissenberg, T. & Burger, A.W., 2000. The Eemian type locality at Amersfoort in the central Netherlands: redeployment of old and new data. In: Van Kolfschoten, Th. & Gibbard, P.L. (eds.): The Eemian - local sequences, global perspectives. Geologie en Mijnbouw / Netherlands Journal of Geosciences 79: 197216(this issue).Google Scholar
De Gans, W., 1995. Een geologisch overzichtsprofiel van Ridderkerk naar Urk. Grondboor & Hamer 49: 9093.Google Scholar
De Gans, W. & Wassing, B.B.T. (in press). Geology and related geotechnical aspects of the underground of Amsterdam. Zeitschrift der Deutschen Geologischen Gesellschaft 151.Google Scholar
De Gans, W., De Groot, Th. & Zwaan, H., 1987. The Amsterdam basin, a case study of a glacial basin in the Netherlands. In: Van der Meer, J.J.M. (ed.): Tills and glaciotectonics - Proceedings of an INQUA symposium on genesis and lithology of glacial deposits (Amsterdam, 1986): 205216.Google Scholar
Jelgersma, S. & Breeuwer, J.B., 1975. Toelichting bij de kaart glaciale verschijnselen gedurende het Saalien; 1:600.000. In: Zagwijn, W.H. & Van Staalduinen, C.J. (eds.): Toelichting bij geologische overzichtskaarten van Nederland. Rijks Geologische Dienst (Haarlem): 93103.Google Scholar
Joon, B., Laban, C. & Van der Meer, J.J.M., 1990. The Saalian glaciation in the Dutch part of the North Sea. Geologie en Mijnbouw 69: 151158.Google Scholar
Laban, C., 1995. The Pleistocene glaciations in the Dutch sector of the North Sea. A synthesis of sedimentary and seismic data. Ph.D. thesis University of Amsterdam: 194 pp.Google Scholar
Van de Meene, E.A. & Zagwijn, W.H., 1978. Die Rheinlaufe im deutsch-niederlandischen Grenzgebiet seit der Saale-Kaltzeit. Ueberblick neuer geologischer und pollenanalytischer Untersuchungen. Fortschritte der Geologie von Rheinland und Westfalen 28: 345359.Google Scholar
Van den Berg, M.W. & Beets, D.J., 1987. Saalian glacial deposits and morphology of the Netherlands. In: Van der Meer, J.J.M. (ed.): Tills and glaciotectonics - Proceedings of an INQUA symposium on genesis and lithology of glacial deposits (Amsterdam, 1986): 235252.Google Scholar
Van der Hammen, Th., Maarleveld, G.C., Vogel, J.C. & Zagwijn, W.H., 1967. Stratigraphy, climatic succession and radiocarbon dating of the Last Glacial in the Netherlands. Geologie en Mijnbouw 46: 7995.Google Scholar
Van der Spek, A.J.F., 1996. Holocene depositional sequences in the Dutch Wadden Sea south of the island of Ameland. Mededelingen Rijks Geologische Dienst 57: 4169.Google Scholar
Van Leeuwen, R.J.W., Beets, D., Bosch, J.H.A., Burger, A.W., Cleveringa, P., Van Harten, D., Herngreen, G.F.W., Kruk, R.W., Langereis, C.G., Meijer, T., Pouwer, R., & De Wolf, H., 2000. Stratigraphy and integrated facies analysis of the Eemian in Amsterdam-Terminal In: Van Kolfschoten, Th. & Gibbard, P.L. (eds.): The Eemian - local sequences, global perspectives. Geologie en Mijnbouw / Netherlands Journal of Geosciences 79: 161196(this issue).Google Scholar
Westerhoff, W.E., De Mulder, E.F.J. & De Gans, W., 1987. Toelichting bij de geologische kaart van Nederland 1:50.000. Blad Alkmaar Oost en West (19 O en 19 W). Rijks Geologische Dienst (Haarlem): 227 pp.Google Scholar
Zagwijn, W.H., 1961. Vegetation, climate and radiocarbon datings in the Late Pleistocene of the Netherlands, Part I: Eemian and Early Weichselian. Mededelingen Geologische Stichting (Haarlem) Nieuwe Serie 14:1545.Google Scholar
Zagwijn, W.H., 1983. Sea-level changes in the Netherlands during the Eemian. Geologie en Mijnbouw 62: 437450.Google Scholar
Zagwijn, W.H. & Van Staalduinen, C.J. (eds.), 1975. Toelichtingen bij geologische overzichtskaarten van Nederland. Rijks Geologische Dienst (Haarlem): 134 pp.Google Scholar