Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T18:08:01.114Z Has data issue: false hasContentIssue false

Late Permian (Zechstein) carbonate-facies maps, the Netherlands

Published online by Cambridge University Press:  01 April 2016

M.C. Geluk*
Affiliation:
Netherlands Institute of Applied Geoscience TNO - National Geological Survey, P.O. Box 80015, 3508 TA UTRECHT, the Netherlands; e-mail: [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Late Permian Zechstein carbonates in the Southern Permian Basin were deposited under marine conditions. The carbonates form part of a largely progradational infill, with a gradual northward facies shift. The paleogeography of the Zechstein carbonate deposits has been reviewed recently on the base of well data, cores and publications. This has resulted in three updated maps of the carbonate units. These maps reflect the increase in knowledge of the palaeogeography of the Zechstein as a result of several decades of subsurface exploration. It is found that deposition of the carbonates was controlled by various factors, i.e., rifting during deposition of the basal Zechstein, sea-level fluctuations and basin subsidence. This resulted in an overall E-W orientated facies distribution in the Zechstein carbonates, and in the gradual northward shift of the various facies belts in time.

Reefs in the Zl Carbonate Member and off-platform highs and turbidites in the Z2 Carbonate Member have been identified as potential future exploration targets.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2000

References

Amiri-Garroussi, K. & Taylor, J.C.M., 1992. Displaced carbonates in the Zechstein of the UK North Sea. Marine and Petroleum Geology 9: 186196.CrossRefGoogle Scholar
Baird, A., 1993. An assessment of the reservoir potential of the Zechstein of the P and Q quadrants and adjacent onshore areas, the Netherlands. Open-file Report Stratigraphic Services International ltd (Surrey, UK): 44 pp.Google Scholar
Brennand, T.P. & Van Veen, F.R., 1975. The Auk oilfield. In: Woodland, A.W. (ed.): Petroleum and the continental shelf of North-West Europe. Applied Science Publishers (London): 275283.Google Scholar
Brueren, J.W.R., 1959. The stratigraphy of the Upper Permian ‘Zechstein’ Formation in the Eastern Netherlands. In: I giacimenti gassiferi dell’ Europa Occidentale - Atti del Convegno (Milano, 1957) 1:243274.Google Scholar
Cameron, T.D.J., Crosby, A., Balson, P.S., Jeffery, D.H., Lott, G.K., Bulat, J. & Harrison, D.J., 1992. The geology of the southern North Sea. United Kingdom Offshore Regional Report, British Geological Survey: 152 pp.Google Scholar
Clark, D.N., 1986. The distribution of porosity in Zechstein carbonates. In: Brooks, J., Goff, J. & Van Hoorn, B. (eds.): Habitat of Paleozoic gas in NW Europe. Geological Society Special Publication 23: 121149.Google Scholar
Clark, D.N. & Tallbacka, L., 1980. The Zechstein deposits of southern Denmark. In: Füchtbauer, H. & Peryt, T. (eds.): The Zechstein basin with emphasis on carbonate sequences. Contributions to Sedimentology 9: 205231.Google Scholar
Cooke-Yarborough, P., 1991. The Hewett Field, blocks 48/28-29-30, 52/4a-5a, UK North Sea. In: Abbots, I.L. (ed.): United Kingdom oil and gas fields, 25 years Commemorative Volume. Geological Society London Memoir 14: 433442.Google Scholar
Demyttenaere, R., 1989. The post-Paleozoic geological history of north-eastern Belgium. Mededelingen Koninklijke Academie van Wetenschappen, Letteren en Schone Kunsten van België 51 : 5181.Google Scholar
Dorsman, L., 1954. Geological occurrence of natural gas in the Netherlands. Geologie en Mijnbouw 16: 443448.Google Scholar
Frikken, H.W., 1999. Reservoir-geological aspects of productivity and connectivity of gas reservoirs in the Netherlands. Ph.D. thesis Delft University of Technology: 92 pp.Google Scholar
Füchtbauer, H., 1980. Composition and diagenesis of a stromatolitic bryozoan bioherm in the Zechstein 1 (northwestern Germany). In: Füchtbauer, H. & Peryt, T. (eds.): The Zechstein basin with emphasis on carbonate sequences. Contributions to Sedimentology 9: 233251.Google Scholar
Galloway, W.E., 1989. Genetic stratigraphic sequences in basin analysis I: architecture and genesis of flooding-surface bounded depositional units. American Association of Petroleum Geologists Bulletin 73: 125142.Google Scholar
Geluk, M.C., 1997. Palaeogeographic maps of Moscovian and Artinskian; contributions from the Netherlands. In: Crasquin-Soleau, S. & De Wever, P. (eds.): Peri-Thethys stratigraphic correlations. Geodiversitas 19: 229234.Google Scholar
Geluk, M.C., 1999. Late Permian (Zechstein) rifting in the Netherlands: models and implications for petroleum geology. Petroleum Geoscience 5: 189199.Google Scholar
Geluk, M.C., Plomp, A. & Van Doorn, Th.H.M., 1996. Development of the Permo-Triassic succession in the basin fringe area, southern Netherlands. In: Rondeel, H.E., Batjes, D.A.J. & Nieuwenhuijs, W.H. (eds.): Geology of gas and oil under the Netherlands. Kluwer (Dordrecht): 5778.Google Scholar
Geluk, M.C., Van Wees, J.D., Grönloh, H. & Van Adrichem Boogaert, H.A., 1997. Palaeogeography and palaeotectonics of the Zechstein (Upper Permian) in the Netherlands. In: Proceedings 13th International Congress on the Carboniferous-Permian (Krakow, 1995). Prace Panstwowego Instytut Geologicznego 157(2): 6375.Google Scholar
Gerling, P., Piske, J. Rasch, H.-J. & Wehner, H., 1996a. Paläogeographie, Organofazies und Genese von Kohlwasserstoffern im Stassfurt-Karbonat Ostdeutschlands (1) Sedimentationsverlauf und Muttergesteinsausbildung. Erdöl Erdgas Kohle 112: 1318.Google Scholar
Gerling, P., Piske, J. Rasch, H.-J. & Wehner, H., 1996b. Paläogeographie, Organofazies und Genese von Kohlwasserstoffern im Stassfurt-Karbonat Ostdeutschlands (2) Genese von Erdölen und Erdölbegleitgasen. Erdöl Erdgas Kohle 112: 152157.Google Scholar
Górski, M., Wojtkowiak, Z. & Radecki, S., 1999. Barnówko-Mosto-Buszewo (BMB) the largest crude oil deposit in Poland. Petroleum Geoscience 5: 515.Google Scholar
Hilden, H.D. (ed.), 1988. Geologie am Niederrhein. Geologisches Landesamt Nordrhein-Westfalen (Krefeld): 142 pp.Google Scholar
Karnin,W.D., , Rockenbauch, K. & Ruijtenberg, P.A., 1992. The effect of the succes of 3D seismic data on the exploration and appraisal of Zechstein targets in NW Germany. First Break 10: 233240.Google Scholar
Kerkmann, K., 1969. Riffe und Algenbänke im Zechstein von Thüringen. Freiberger Forschungshefte C 252: 85 pp.Google Scholar
Lokhorst, A. (ed.), 1998. The Northwest European gasatlas. Netherlands Institute of Applied Geoscience TNO (Haarlem); ISBN 90-72869-60-5.Google Scholar
Maureau, G.T.F.R. & Van Wijhe, D.H., 1979. The prediction of porosity in the Permian (Zechstein 2) Carbonate of eastern Netherlands using seismic data. Geophysics 44: 15021517.Google Scholar
NITG (Netherlands Institute of Applied Geoscience TNO), 1998. Geological atlas of the subsurface of the Netherlands, explanation to map sheet X Almelo-Winterswijk. NITG (Haarlem): 134 pp.Google Scholar
Paul, J., 1980. Upper Permian algal stromatolite reefs, Harz Mountains (F.R. Germany). In: Füchtbauer, H. & Peryt, T. (eds.): The Zechstein basin with emphasis on carbonate sequences. Contributions to Sedimentology 9: 253268.Google Scholar
Peryt, T. & Raczylski, P., 1999. Upper Permian bioherms in the basin centre: Zechstein limestone in western Poland. Abstracts 14th International Congress on the Carboniferous-Permian, (Calgary, 1999): 112.Google Scholar
RGD (Rijks Geologische Dienst), 1991a. Geological atlas of the subsurface of the Netherlands, explanation to map sheet I Vlieland-Terschelling. RGD (Haarlem): 77 pp.Google Scholar
RGD (Rijks Geologische Dienst), 1991b Geological atlas of the subsurface of the Netherlands, explanation to map sheet II Ameland-Leeuwarden. RGD (Haarlem): 87 pp.Google Scholar
RGD (Rijks Geologische Dienst), 1993a. Geological atlas of the subsurface of the Netherlands: sheet IV Texel-Purmerend. RGD (Haarlem): 127 pp.Google Scholar
RGD (Rijks Geologische Dienst), 1993b. Geological atlas of the subsurface of the Netherlands: sheet V Sneek-Zwolle. RGD (Haarlem): 126 pp.Google Scholar
RGD (Rijks Geologische Dienst), 1995. Geological atlas of the subsurface of the Netherlands: sheet III Rotummeroog-Groningen. RGD (Haarlem): 113 pp.Google Scholar
Richter-Bernburg, G., 1955. Statigraphische Gliederung des deutschen Zechsteins. Zeitschrift der deutschen geologischen Gesellschaft 105: 593645.Google Scholar
Sannemann, D., Zimdars, J. & Plein, E., 1978. Der basale Zechstein (A2-T1) zwischen Weser und Ems. Zeitschrift der deutschen geologischen Gesellschaft 129: 3369.Google Scholar
Smith, D.B., 1981. The Magnesian Limestone (Upper Permian) reef complex of northeastern England. In: Toomey, D.F. & Wilson, J.L. (eds.): European fossil reef models. Society of Economic Paleontologists and Mineralogists Special Publication 30: 161186.CrossRefGoogle Scholar
Southwood, D.A. & Hill, W.O.R., 1995.The origin and distribution of porosity in the Zechsteinkalk (Upper Permian) of Hewett Field, Southern North Sea. Petroleum Geoscience 1: 289302.CrossRefGoogle Scholar
Stäuble, A.J. & Milius, G., 1970. Geology of the Groningen gasfield, Netherlands. In: Halbouty, M.T. (ed.): Geology of giant petroleum fields. American Association of Petroleum Geologists Memoir 14: 359369.Google Scholar
Strohmenger, C. & Strauss, C., 1996. Sedimentology and palynofacies of the Zechstein 2 Carbonate (Upper Permian, Northwest Germany): implications for sequence stratigraphic subdivision. Sedimentary Geology 102: 5577.CrossRefGoogle Scholar
Strohmenger, C., Antonini, M., Jäger, G., Rockenbauch, K. & Strauss, C., 1996a. Zechstein 2 Carbonate reservoir facies distribution in relation to Zechstein sequence stratigraphy (Upper Permian, Germany): an integrated approach. Bulletin du Centre de Recherche et Exploration-Production Elf Aquitain 20(1): 135.Google Scholar
Strohmenger, C., Voigt, E. & Zimdars, J., 1996b. Sequence stratigraphy and cyclic development of Basal Zechstein carbonate-evaporite deposits with emphasis on Zechstein 2 off-platform carbonates (Upper Permian, Northeast Germany). Sedimentary Geology 102: 3354.CrossRefGoogle Scholar
Strohmenger, C., Voigt, E. & Zimdars, J., 1996c. Einfluss von Eustasie und Paläorelief auf die sedimentologische und diagenetische Entwicklung der Zechstein 2 Karbonate (Ober-Perm, Nordost-Deutschland). Erdöl Erdgas Kohle 109: 445450.Google Scholar
Taylor, J.C.M., 1998. Upper Permian - Zechstein. In: Glennie, K.W. (ed.): Petroleum geology of the North Sea (4th ed.). Blackwell Science: 174212.Google Scholar
Teichmüller, R., 1957. Ein Querschnitt durch den Südteil des Niederrheinischen Zechsteinbeckens. Geologisches Jahrbuch 73: 3950.Google Scholar
Tucker, M.E., 1991. Sequence stratigraphy of carbonate - evaporite basins: models and applications to the Upper Permian (Zechstein) of northeast England and adjoining North Sea. Journal of the Geological Society 148: 10191036.Google Scholar
Van Adrichem Boogaert, H.A. & Burgers, W.F.J., 1983. The development of the Zechstein in the Netherlands. Geologie en Mijnbouw 62: 8392.Google Scholar
Van Adrichem Boogaert, H.A. & Kouwe, W., 1993-1997. Stratigraphic nomenclature of the Netherlands; revision and update by the RGD and NOGEPA. Mededelingen Rijks Geologische Dienst 50.Google Scholar
Van der Baan, D., 1990. Zechstein reservoirs in the Netherlands. In: Brooks, J. (ed.): Classic petroleum provinces. Geological Society Special Publication 50: 379398.Google Scholar
Van der Poel, A.B., 1987. Porosity development of some uplifted carbonates of the southern Permian Basin (Texel-IJsselmeer High, the Netherlands and The Harz, Germany). Mededelingen Rijks Geologische Dienst 41: 117.Google Scholar
Van der Poel, A.B., 1989. A case study on the hydrocarbon geology of Upper Permian (Zechstein 3) carbonates in licence P6, the Netherlands’ offshore. Geologie en Mijnbouw 68: 285296.Google Scholar
Van der Sande, J.M.M., Reijers, T.J.A. & Casson, N., 1996. Multidisciplinary exploration strategy in the Northeast Netherlands Zechstein 2 Carbonate play, guided by 3D seismic. In: Rondeel, H.R., Batjes, D.A.J. & Nieuwenhuijs, W.A. (eds.): Geology of gas and oil under the Netherlands. Kluwer Academic Publishers (Dordrecht): 125142.Google Scholar
Van Lith, J.G.J., 1983. Gas fields of the Bergen concession, the Netherlands. Geologie en Mijnbouw 62: 6374.Google Scholar
Van Waterschoot Van der Gracht, W.A.J.M., 1918. Eindverslag over de onderzoekingen en uitkomsten van de Dienst der Rijks-opsporing van Delfstoffen in Nederland. Amsterdam: 664 pp.Google Scholar
Vejbaæk, O.V., 1990. The Horn Graben and its relationship to the Oslo Graben and the Danish Basin. Tectonophysics 178: 2949.Google Scholar
Visser, W.A., 1955. The Upper Permian in the Netherlands. Leidsche Geologische Mededelingen 20: 186194.Google Scholar
Wagner, R., 1994. Stratygrafia osadów i roswój basenu Cechsztynskiego na nizu Polskim (with full English translation: Stratigraphy and evolution of the Zechstein basin in the Polish Lowlands). Prace Panstwowego Instytutu Geologicznego 146: 71 pp.Google Scholar
Wolburg, J., 1957. Ein Querschnitt durch den Nordteil des Niederrheinischen Zechsteinbeckens. Geologisches Jahrbuch 73: 738.Google Scholar
Wolf, R., 1985. Tiefentektonik des linksniederrheinischen Steinkohlengebietes. Beiträge zur Tiefentektonik westdeutsche Steinkohlenlagerstätten. Geologisches Landesamt Nordrhein-Westfalen (Krefeld): 105167.Google Scholar
Ziegler, M.A., 1989. North German Zechstein facies patterns in relation to their substrate. Geologische Rundschau 78: 105127.Google Scholar
Zuurdeeg, B.W., Coenegracht, Y.M.A., Mebius, J.E. & Van der Weiden, M.J.J., 1984. Prognose van het mineraalwater van Winterswijk. Internal Report Vening Meinesz Laboratorium, Rijksuniversiteit Utrecht: 22 pp.Google Scholar