Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T11:44:46.148Z Has data issue: false hasContentIssue false

The interactions between Quaternary Geology and Archaeology

Published online by Cambridge University Press:  24 March 2014

Wim Z. Hoek*
Affiliation:
Department of Physical Geography, Faculty of Geosciences, Utrecht University, P.O. Box 80115, 3508 TC Utrecht, the Netherlands. Email: [email protected].
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This special issue focuses on the interactions between Quaternary Geology and Archaeology and results from the INQUA-NL Symposium: ‘Late Quaternary Climate Change: a Human Perspective’ held on April 14th 2009, KNAW Trippenhuis, Amsterdam. The symposium was attended by over 125 scientists and students with interest in the fields of Quaternary Geology and Archaeology. The symposium was organized for the INQUA Netherlands commission (INQUA-NL) by Wim Hoek, Faculty of Geosciences, Utrecht University (UU), Henry Hooghiemstra, Faculty of Science, University of Amsterdam (UvA), and Jos Deeben, National Service for Cultural Heritage (RCE). The INQUA Netherlands commission (INQUA-NL) is the Netherlands' national representation in INQUA, the International Union for Quaternary Research (see further www.geo.uu.nl/inqua-nl).

The Netherlands is a country made by humans, but before the large-scale impact of humans that formed the typical Dutch landscape, people inhabited our area and needed to be able to deal with natural disasters like climate change, river floods or sea-level change. In the field of archaeology, there is increasingly more space to include the environmental changes that partly determined the behaviour of prehistoric communities. The interactions between quaternary geology and archaeology are not only restricted to provide stratigraphical information during archaeological prospection or on exposures during excavations. Quaternary geology is increasingly applied to gain insight in the landscape development and environmental setting where people have lived in the past. Above this, predictive models can be improved by the interaction of archaeological and geological/palaeogeographical research (see also Deeben et al., 2010).

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2010

References

Berendsen, H.J.A. & Stouthamer, E., 2001. Palaeogeographic development of the Rhine-Meuse delta, the Netherlands. Koninklijke Van Gorcum, Assen: 288 pp.Google Scholar
Busschers, F. S., Kasse, C., VanBalen, R.T., Vandenberghe, J., Cohen, K., Weerts, H.J.T. & Wallinga, J., 2007. Late Pleistocene evolution of the Rhine in the southern North Sea Basin: imprints of climate change, sea-leveloscillations and glacio-isostacy. Quaternary Science Reviews 26: 32163248.CrossRefGoogle Scholar
Deeben, D., Hiddink, H., Huisman, D.J., Müller, A., Schokker, J. & Wallinga, J., 2010. Middle Palaeolithic artefact migration due to periglacial processes; a geological investigation into near-surface occurrence of Palaeolithic artefacts (Limburg-Eastern Brabant coversand region, the Netherlands). Netherlands Journal of Geosciences – Geologie en Mijnbouw 89(1): 3550.CrossRefGoogle Scholar
De Gans, W., 1982. Location, age and origin of pingo remnants in the Drentsche Aa Valley area (the Netherlands). Geologie en Mijnbouw 61: 147158.Google Scholar
Kluiving, S.J., Verbers, A.L.L.M. & Thijs, W.J.F., 2010. Lithological analysis of 45 presumed pingo remnants in the northern Netherlands (Friesland): substrate control and fill sequences. Netherlands Journal of Geosciences – Geologie en Mijnbouw 89(1): 6175.CrossRefGoogle Scholar
Louwe Kooijmans, L.P. (ed.), 2001a. Hardinxveld-Giessendam Polderweg; een mesolithisch jachtkamp in het rivierengebied (5500-5000 v. Chr.). Rapportage Archeologische Monumentenzorg 83, Rijksdienst voor het Oudheidkundig Bodemonderzoek (Amersfoort): 488 pp.Google Scholar
Louwe Kooijmans, L.P. (ed.), 2001b. Hardinxveld-Giessendam De Bruin; een kampplaats uit het Laat-Mesolithicum en het begin van de Swifterbandcultuur. Rapportage Archeologische Monumentenzorg 88, Rijksdienst voor het Oudheidkundig Bodemonderzoek (Amersfoort): 550 pp.Google Scholar
Van Balen, R.T. & Busschers, F.S., 2010. Human presence in the central Netherlands during early MIS 6 (˜170-190 Ka): evidence from early Middle Palaeolithic artefacts in ice-pushed Rhine-Meuse sediments. Netherlands Journal of Geosciences – Geologie en Mijnbouw 89(1): 7783.CrossRefGoogle Scholar
Van Dinter, M. & Van Zijverden, W.K., 2010. Settlement and land use on crevasse splay deposits; geoarchaeological research in the Rhine-Meuse Delta, the Netherlands. Netherlands Journal of Geosciences – Geologie en Mijnbouw 89(1): 2134.CrossRefGoogle Scholar
Van de Plassche, O. Makaske, B. Hoek, W.Z., Konert, M. & Van der Plicht, J., 2010. Mid-Holocene water-level changes in the lower Rhine-Meuse delta (western Netherlands): implications for the reconstruction of relative mean sea-level rise, palaeoriver-gradients and coastal evolution. Netherlands Journal of Geosciences – Geologie en Mijnbouw 89(1): 320.CrossRefGoogle Scholar
Verdegaal, S., Troelstra, S.R., Beets, C.K.J. & Vonhof, H.B., 2005. Stable isotopic records in unionid shells as a paleoenvironmental tool. Netherlands Journal of Geosciences – Geologie en Mijnbouw 84(4): 403408.CrossRefGoogle Scholar
Versteegh, E.A.A., Vonhof, H.B., Troelstra, S.R. & Kroon, D., 2010. A molluscan perspective on hydrological cycle dynamics in northwestern Europe. Netherlands Journal of Geosciences – Geologie en Mijnbouw 89(1): 5160.CrossRefGoogle Scholar
Wallinga, J., Davids, F. & Dijkmans, J.W.A., 2007. Luminescence dating of Netherlands' sediments. Netherlands Journal of Geosciences – Geologie en Mijnbouw 86: 179196.CrossRefGoogle Scholar