Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T14:16:02.543Z Has data issue: false hasContentIssue false

Holocene fluvial response to climate change and human activities; Burgundy, France.

Published online by Cambridge University Press:  01 April 2016

M.D. Blum
Affiliation:
Department of Geosciences, University of Nebraska, Lincoln, NE 68588 USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Alluvial deposits of the Loire/Arroux trunk/tributary system record distinct, synchronous episodes of regional fluvial adjustment. Changes in facies and depositional style through time can be interpreted with a modern analogue model that relates vegetative cover/human influence with sediment supply, and modes of atmospheric circulation with the paths and styles of storms that drive variable discharge regimes across western Europe.

Zonal atmospheric circulation results in a Mediterranean style climate over southern Burgundy, producing dry conditions punctuated by infrequent, large floods. Episodic overbank sedimentation and the burial of thin paleosols in sandy overbank facies is indicative of this style of fluvial activity, ca 1300 years BP. Humans may have increased the available volume of fine grained sediment at this times through increased agricultural activity along valley axes, however facies match that expected from a ‘flashy’ discharge regime.

In contrast, meridional circulation patterns result in a maritime style climate over southern Burgundy, with the intrusion of storms, moist conditions and frequent, moderate magnitude discharges. Wide, deep channels, thick channel facies and thin overbank facies are indicative of this style of fluvial activity, recorded in deposits dating to ca 4050 to 3200 years BP. Strong meridional conditions and extreme climatic variability during the Little Ice Age resulted in very large discharges that straightened and widened channels, while scouring and obscuring older terraces (ca 500 years BP). Deposition over the last two centuries is related to increasingly zonal circulation and infrequent, large (over-bank) floods. Changes in fluvial dynamics over the last 300 years can be attributed primarily to climatic control, as there has been very little change in land-use over that period.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2002

References

Antoine, P., 1994. The Somme Valley terrace system (northern France) : A model of river response to Quaternary climatic variations since 800,000 BP. Terra-Nova 6: 453464.Google Scholar
Antoine, P., 1997. Modification des systèmes fluviátiles à la transition Pléniglaciaire-Tardiglaciare et à l’Holocene: L’example du bassin de la Somme (Nord de la France). Géographie Physique et Quaternaire 51(1): 93106.CrossRefGoogle Scholar
Aubert, D., 1995. Analyse des fluctuation interannuelles des débits et des transports fluviaux de sédiments sur les fleuves et rivières de Bourgogne. Analyse de données hydro-climatologiques et géochimiques, modélisation. Unpublished Projet de Recherche de Maîtrise, Universite Louis Pasteur, CNRS (Strassbourg): 25 pp.Google Scholar
Barlow, L.K., White, J.W.C., Barry, R.G., Rogers, J.C. & Grootes, P.M., 1993. The North Atlantic oscillation signature in Deuterium and Deuterium excess signals in the Greenland ice sheet project 2 ice cores, 1840–1970. Geophysical Research Letters 20 (24): 29012904.Google Scholar
Becker, B. & Schirmer, W. 1977. Palaeoecological study on the Holocene valley development of the River Main, southern Germany. Boreas 6: 303321.CrossRefGoogle Scholar
Benito, G., Machado, M.J. & Perez-Gonzalez, A., 1996. Climate change and flood sensitivity in Spain. In: Branson, J., Brown, A.G. & Gregory, K.J. (eds.): Global Continental Changes: the Context of Palaeohydrology. Geological Society Special Publication 115: 8598.Google Scholar
Berry, W. 1987. Southern Burgundy in Late Antiquity and the Middle Ages. In: Crumley, C.L. & Marquardt, W.H. (eds.): Regional Dynamics: Burgundián Landscapes in Historical Perspective. Academic Press (San Diego): 447607.Google Scholar
Birkeland, P.W., 1984, 1999. Soils and Geomorphology. Oxford University Press (New York) 2nd Ed, 3rd Ed.Google Scholar
Blanchet, G., 1990. Regimes météorologiques et diversité climatique dans l’espace Rhônalpin. Revue de Géographie de Lyon 65(2): 106117.Google Scholar
Blum, M.D., Toomey, R.S. & Valastro, S. Jr., 1994. Fluvial response to Late Quaternary climatic and environmental change, Edwards Plateau, Texas. Palaeogeography, Palaeoclimatology, Palaeoecology 108: 121.Google Scholar
Blum, M.D. & Straffin, E.C., 2001. Fluvial responses to external forcing: Examples from the French Massif Central, the Texas coastal plain, the Sahara of Tunisia, and the lower Mississippi Valley. In: Maddy, D. & Macklin, M.A. (eds.): River Basin Sediment Systems: Archives of Environmental Change. Balkema Press (Lisse): 195228.Google Scholar
Blum, M.D. & Tornqvist, T.E., 2000. Fluvial response to climate and sea-level change: a review and look forward. Sedimentology 47 (Supplement 1): 148.Google Scholar
Bomer, B., 1972. Les îsles de la Loire: évolution ou stabilité. Etudes Ligeriennes: 6980.Google Scholar
Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J. & Bonani, G., 1993. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365: 143147.Google Scholar
Bond, G.C. & Lotti, R., 1995. Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation. Science 267: 10051010.Google Scholar
Brackenridge, G.R., 1988. River flood regime and floodplain stratigraphy. In: Baker, V.R., Kockel, R.C. & Patton, P.C. (eds.): Flood Geomorphology. John Wiley and Sons (NewYork): 139165.Google Scholar
Bravard, J-P., 1992. Rapport No. 2: Les rythemes d’évolution morphologique des vallées Françaises au Tardiglaciaire et l’Holocène. Bulletin de Association Géographique Française (Paris): 207226.Google Scholar
Bridgland, D.R., 2000. River terrace systems in north-west Europe: an archive of environmental change, uplift and early human occupation. Quaternary Science Reviews 19: 12931303.CrossRefGoogle Scholar
Brown, A.G., 1998. Fluvial evidence of the medieval warm period and the late Medieval climatic deterioration in Europe. In: Benito, G., Baker, V.R. & Gregory, K.J. (eds.): Palaeohydrology and Environmental Change. Wiley (Chichester): 4352.Google Scholar
Bull, W.B., 1991. Geomorphic responses to climate change. Oxford University Press (London).Google Scholar
Butzer, K.W. 1980. Holocene alluvial sequences: Problems of dating and correlation. In: Cullingford, R.A., Davidson, D.A. & Lewin, J. (eds.): Timescales in Geomorphology. John Wiley and Sons (London): 131142.Google Scholar
COHMAP Project Members, 1988. Climatic changes of the last 18,000 years: Observations and model simulations. Science 241: 10431052.CrossRefGoogle Scholar
Colls, A., 1999. Optical dating of fluvial sediments from the Loire Valley, France. Unpublished MS thesis, University of Oxford: 85pp.Google Scholar
Colls, A., Stokes, S., Blum, M.D. & Straffin, E., 2001. Age limits on late Quaternary evolution of the upper Loire River. Quaternary Science Reviews 20: 743750.CrossRefGoogle Scholar
Crumley, C. 1993. Analyzing historic ecotonal shifts. Ecological Applications 3(3): 377384.Google Scholar
Crumley, C.L., 1987. Historical Ecology. In: Crumley, C.L. & Marquardt, W.H. (eds.): Regional Dynamics: Burgundian Landscapes in Historical Perspective. Academic Press (San Diego): 237264.Google Scholar
Crumley, C.L. & Marquardt, W.H., 1987 (eds.). Regional Dynamics: Burgundian Landscapes in Historical Perspective. Academic Press (San Diego).Google Scholar
Dai, A., Fung, I.Y. & Del Genio, A.D., 1997. Surface observed global land precipitation variations during 1900–88. Journal of Climate 10:29432961.Google Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P. Sveinbjomsdottir, A.E., Jouzel, J. & Bond, G., 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364: 218220.Google Scholar
Decamps, H. & Fortune, M., 1991. Long term ecological research and fluvial landscapes. In: Long Term Ecological Research: 137151.Google Scholar
Deleage, A., 1941. La vie rurale en Bourgogne jusqu’au début du onzième siècle. Protat Freres (Mâcon).Google Scholar
DIREN, 1996. Direction Regionale de L’Environnement: Bassin de Loire-Bretagne.Google Scholar
Fager, K-D. & Lozek, V., 1982. Climatic change, archaeology and Quaternary science in the eastern Mediterranean region. In: Harding, A.F. (ed.): Climatic Change in Later Prehistory. Edinburgh University Press: 143161.Google Scholar
Fauquette, S., Guiot, J., Menut, M., De Beaulieu, J.-L., Reille, M. & Guenet, P., 1999. Vegetation and climate since the last inter-glacial in the Vienne area (France). Global and Planetary Change 20: 117.Google Scholar
Friedrich, M., Kromer, B., Kaiser, K., Spurk, M., Hughen, K. & Johnsen, S., 2001. High resolution climate signals in the Bølling-Allerød Interstadial(Greenland Interstadial 1) as reflected in European tree-ring chronologies compared to marine varves and ice-core records. Quaternary Science Reviews 20: 1223 – 1232.Google Scholar
Fuller, I.C., Macklin, M.G., Lewin, J., Passmore, D.G. & Winde, A.G., 1998. River response to high-frequency climate oscillations in southern Europe over the past 200 k.y. Geology 26: 275278.2.3.CO;2>CrossRefGoogle Scholar
Goossens, Chr., 1985. Principal component analysis of Mediterranean rainfall. Journal of Climatology 5: 379388.CrossRefGoogle Scholar
GRIP Greenland Ice-core Project Members, 1993. Climate instability during the last interglacial period recorded in the GRIP ice core. Nature 364: 203207.Google Scholar
Guillet, B., Janssen, C.R., Kalis, A.J. & De Valik, E.-J., 1976. La végétation pendant le Post-Glaciaire dans l’est de France. In: Guilaine, J. (ed.): La préhistoire française, v. 2, CNRS: 8294.Google Scholar
Gunn, J. & Crumley, C.L., 1991. Global energy balance and regional hydrology: A Burgundian case study. Earth Surface Processes and Landforms 16: 579592.Google Scholar
Gustard, A., Roald, L.A., Demuth, S., Lumadjent, H.S. & Gross, R., 1989. Flow Regimes from Experimental and Network Data (FREND) Volume 1 Hydrological Studies, UNESCO International Hydrological Programme: 344 pp.Google Scholar
Hargrove, T., 1994. Rapport sur la Prospection et les Fouilles, Commune d’Uxeau. Direction Regional de l’Archeologie de Bourgogne (DRAC), Dijon.Google Scholar
Harman, J.R., 1991. Synoptic Climatology of the Westerlies: Process and Patterns. The Association of American Geographers: 80pp.Google Scholar
Harrison, S.P. & Digerfeldt, G., 1993. European lakes as palaeohydrologic and palaeoclimatic indicators. Quaternary Science Reviews 12:233248.Google Scholar
Harrison, S.P. Prentice, I.C. & Guiot, J., 1993. Climatic controls on Holocene lake-level changes in Europe. Climate Dynamics 8: 189200.Google Scholar
Hurrell, J., 1995. Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269: 676679.Google Scholar
Hurrell, J. & Van Loon, H., 1997. Decadal variations in climate associated with the North Atlantic Oscillation. Climatic Change 36:301326.CrossRefGoogle Scholar
Jones, E., 1994. Rapport sur la Prospection et les Fouilles, Commune d’Uxeau. Direction Regional de l’Archeologie de Bourgogne (DRAC), Dijon.Google Scholar
Kalicki, T., 1996. Climatic or anthropogenic alluviation in Central European valleys during the Holocene? In: Branson, J., Brown, A.G. & Gregory, K.J. (eds.): Global Continental Changes: the Context of Palaeohydrology. Geological Society Special Publication 115: 205215.Google Scholar
Knox, J.C., 1975. Valley alluviation in southwestern Wisconsin. Annals of the Association of American Geographers 62: 401410.Google Scholar
Knox, J.C., 1983. Responses of river systems to Holocene climates. In: Wright, H.E. & Porter, S.C. (eds.): Late Quaternary environments of the United States: The Holocene. University of Minnesota Press (Minneapolis): 2641.Google Scholar
Knox, J.C., 1996. Fluvial systems since 20,000 yrs BP. In: Gregory, K.J., Starkel, L. & Baker, V.R. (eds.): Global Continental Palaeohydrology. John Wiley and Sons (Chichester): 87108.Google Scholar
Kozarski, S., Gonera, P. & Antczak, B., 1988. Valley floor development and paleohydrologic changes: Late Vistulian and Holocene history of the Warta River (Poland). In: Lang, G. & Schlüchter, C. (eds.): ‘Lake, Mire and River EnvironmentsBalkema (Rotterdam): 185204.Google Scholar
Langbein, W.B. & Schumm, S.A., 1958. Yield of sediment in relation to mean annual precipitation. Trans. Am. Geophys. Union 39: 10761084.Google Scholar
Lamb, H.F., 1977. Climate: present, past and future. Methuen (London): 835 pp.Google Scholar
Lamb, H.F., 1982. Climate, History, and the Modern World. Methuen (London).Google Scholar
Lamb, H.F., 1984a. Climate in the last thousand years: Natural climatic fluctuations and change. In: Flohn, H. & Fantechi, R. (eds.): The Climate of Europe: Past, Present and Future. Reidel (Holland): 2564.Google Scholar
Lamb, H.F., 1984b. Some studies of the Little Ice Age of recent centuries and its great storms. In: Morner, N.A. & Karlen, W. (eds.): Climatic Changes on a yearly to Millenial Basis. Reidel (Holland): 309329.Google Scholar
Leroux, M., 1990. Les conditions dynamiques moyennes du climat de la France. Revue de Géographie de Lyon 65 (2): 6379.Google Scholar
Macé, S., Vérot-Bourreloy, A. & Bravard, J.P., 1991. Genèses et fonctionnement Holocène de la Plaine alluvialle du Rhône a Lyon. 116e Cong. Nat. des Soc. Sav., Chambéry, Préprotohistoire: 1731.Google Scholar
Macklin, M.A. & Lewin, J., 1996. Holocene river alluviation in Britain. Z. Geomorph. Supp. 88: 109122.Google Scholar
Miall, A.D., 1996 The geology of fluvial deposits. Sedimentary facies, basin analysis, and petroleum geology. Springer (NewYork): 582 pp.Google Scholar
Moses, T., Kitadis, G.N., Diaz, H.F. & Barry, R.G., 1987. Characteristics and frequency of reversals in mean sea level pressure in the north Atlantic sector and their relationship to long-term temperature trends. Journal of Climatology 7: 1330.Google Scholar
Ohmori, H., 1983. Erosion rates and their relation to vegetation from the viewpoint of world-wide distribution. Bulletin of the Dept. of Geogr., University of Tokyo 15: 7791.Google Scholar
Pandzie, K. & Trninic, D., 1992. Principal component analysis of a river basin discharge and precipitation anomaly fields associated with the global circulation. Journal of Hydrology 132: 343360.CrossRefGoogle Scholar
Probst, J-L., 1989. Hydroclimatic fluctuations of some European Rivers since 1800. In: Petts, G.E. (ed.): Historical Changes of Large Alluvial Rivers, Western Europe. John Wiley and Sons (NewYork): 4155.Google Scholar
Probst, J.-L., & Tardy, Y. 1987. Long range stream flow and world continental runoff fluctuations since the beginning of this century. Journal of Hydrology 94: 289311.Google Scholar
Reille, M. & De Beaullieu, J-L., 1988. History of the Wurm and Holocene vegetation in western Velay (Massif Central, France). A comparison of pollen analysis from three corings at Lac du Bouchet. Review of Palaeobotany and Palynology 54: 233248.Google Scholar
Rodwell, M.J., Rowell, D.P. & Folland, C.K., 1999. Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature 398: 320323.Google Scholar
Rogers, J.C., 1997. North Atlantic storm track variability and its association to the north Atlantic Oscillation and climate variability of northern Europe. American Meteorological Society 10: 16351647.Google Scholar
Rousseau, D-D., Limondin, N. & Puissegur, J-L., 1993. Holocene environmental signals from mollusk assemblages in Burgundy, France. Quaternary Research 40: 237253.CrossRefGoogle Scholar
Rumsby, B.T. & Macklin, M.G., 1996. River response to the last neoglacial in northern, western, and central Europe. In: Branson, J., Brown, A.G. & Gregory, K.J. (eds.): Global Continental Changes: The Context of Palaeohydrology. Geological Society Special Publication 115: 217233.Google Scholar
Schirmer, W. 1988. Holocene valley development on the Upper Rhine and Main. In: Lang, G. & Schlüchter, C. (eds.): Lake, Mire and River Environments. Balkema (Rotterdam): 153160.Google Scholar
Schumm, S.A. & Brackenridge, G.R., 1987. River Responses. In: Ruddiman, W.F. & Wright, H.E. (eds.): North America and Adjacent Oceans During the Last Deglaciation. Geological Society of America, Decade of North American Geology K-3: 221240.Google Scholar
Siffendine, A., Bertrand, P., Lallier-Vergès, E. & Patience, A.J., 1996. Lacustrine organic fluxes and palaeoclimatic variation during the last 15 ka: Lac Du Bouchet (Massif Central, France). Quaternary Science Reviews 15: 203211.Google Scholar
Starkel, L., 1987. Anthropologie sedimentological changes in Central Europe, In: Starkel, L. (ed.): Anthropogenic sedimentological changes during the Holocene. Striae 26: 2129.Google Scholar
Starkel, L., 1991a. The Vistula River valley: A case study for Central Europe. In: Starkel, L., Gregory, K.J. & Thornes, J.B. (eds.): Temperate Palaeohydrology. John Wiley and Sons (Chichester): 171188.Google Scholar
Starkel, L., 1991b. Long-distance correlation of fluvial events in the temperate zone. In: Starkel, L., Gregory, K.J. & Thornes, J.B. (eds.): Temperate Palaeohydrology. John Wiley and Sons (Chichester): 473495.Google Scholar
Staron, G., 1990. La spécificite pluviometrique du Massif Central - Revue de Géographie de Lyon 65(2): 9096.Google Scholar
Staron, G., 1993. Chronologie des catastrophes pluvieuses dans le sud de la France. Revue de Géographie de Lyon 68: 91100.Google Scholar
Straffin, E.C., 2000. Fluvial response to climate change and human activities, Burgundy, France. Unpublished Ph.D. dissertation, University of Nebraska-Lincoln.Google Scholar
Straffin, E.C., Blum, M.D., Colls, A. & Stokes, S., 1999. Alluvial Stratigraphy of the Loire and Arroux Rivers, Burgundy, France. Quaternaire 10 (4): 271282.Google Scholar
Stuiver, M., Grootes, P.M. & Braziunas, T.F., 1995. The GISP d180 climate record of the past 16,500 years and the role of the sun, ocean and volcanoes. Quaternary Research 44: 341354.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W. Burr, G.S., Hughen, K.A., Kromer, B., McCormac, F.G., Van der Plicht, J. & Spurk, M., 1998. Radiocarbon 40: 10411083.Google Scholar
Tabony, R., 1981. A principal component and spectral analysis of European rainfall. Journal of Climatology 1: 282294.Google Scholar
Taylor, M.P. & Lewin, J., 1997. Non-synchronous response of adjacent floodplain systems to Holocene environmental change. Geomorphology 18: 251264.CrossRefGoogle Scholar
Tzedakis, P.C., Andrieu, V., De Beaulieu, J.-L., Crowhurst, S., Follieri, M., Hooghiemstra, H., Magri, D., Reille, M., Sadori, L., Shackleton, N.J. & Wijmstra, T.A., 1997. Comparison of terrestrial and marine records of changing climate of the last 500,000 years. Earth and Planetary Science Letters 150: 171176.Google Scholar
UNESCO, 1979. Discharge of selected rivers of the world.Google Scholar
Vandenberghe, J., 1995. Timescales, climate and river development. Quaternary Science Reviews 14: 631638.Google Scholar
Vines, R.G., 1985. European rainfall patterns. Journal of Climatology 5: 607616.Google Scholar
Yu, G. & Harrison, S.P., 1995. Holocene changes in atmospheric circulation patterns as shown by lake status changes in northern Europe. Boreas 24: 260268.CrossRefGoogle Scholar