Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T07:23:10.620Z Has data issue: false hasContentIssue false

Global correlation of long Quaternary fluvial sequences: a review of baseline knowledge and possible methods and criteria for establishing a database

Published online by Cambridge University Press:  01 April 2016

D. Maddy
Affiliation:
Department of Geography, University of Newcastle upon Tyne, Newcastle upon Tyne NEI 7RU
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Fluvial sequences, particularly major terrace staircases, represent potential archives of palaeoclimatic fluctuation during the Quaternary. Such sequences can span much if not all of the Quaternary and, provided that dating is possible, can serve as stratigraphical frameworks for correlation with evidence from other depositional environments. In particular, they can provide a terrestrial lithostratigraphical framework that can be correlated with the global marine oxygen isotope record. Fluvial lithos-tratigraphical frameworks also provide important contexts for records of faunal evolution and human occupation, the latter largely determined from the occurrence of artefacts in fluviatile sediments.

This paper announces a new project within the International Geological Correlation Programme, devoted to fluvial sequences (IGCP 449 ‘Global Correlation of Late Cenozoic fluvial deposits’). It attempts to summarize existing baseline knowledge at the outset of the project and outlines the proposed methods and criteria for establishing a database of fluvial sequences.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2002

References

Acharyya, S.K. & Basu, P.K., 1993. Toba ash on the Indian subcontinent and its implication for correlation of Late Pleistocene alluvium. Quaternary Research 40: 1019.Google Scholar
Adam, K.D., Bloos, G. & Ziegler, R., 1995. Stop 11: Steinheim / Murr, N of Stuttgart - Locality of Homo steinheimensis. In: Schirmer, W. (ed.): Quaternary field trips in Central Europe (vol. 2). Verlag Dr. Friedrich Pfeil (Munich): 727728.Google Scholar
Alekseev, M.N., 1996. Possible ‘Cromerian Compie’ equivalent sequences in the Russian Plain. In: Turner, C. (ed.): The early Middle Pleistocene in Europe. Balkema (Rotterdam): 273277.Google Scholar
Alekseev, M.N. & Drouchits, V.A., 1997. Correlation of Pleistocene events of west and east Russian Arctic shelf regions. IGCP 396 (Durham) Abstract booklet: 12.Google Scholar
Allen, L.G. & Gibbard, P.L., 1994. Pleistocene evolution of the Solent River of southern England. Quaternary Science Reviews 12: 503528.CrossRefGoogle Scholar
Allen, L.G., Gibbard, P.L., Petit, M.E., Preece, R.C. & Robinson, J.E., 1996. Late Pleistocene interglacial deposits at Pennington Marshes, Lymington, Hampshire, Southern England. Proceedings of the Geologists’Association 107: 3950.Google Scholar
Andreis, R.R., Ramos, R.R.C., Mello, C.L. & Ribeiro, A., 2000. Tertiary fluvial systems of the Resende basin, southern Rio de Janeiro State, Brazil. Field Trip guide, 31st International Geological Congress: 27pp.Google Scholar
Antoine, P., 1990. Chronostratigraphie et environnement du palaeolithique du bassin de la Somme. Publications du Centre Européen de Recherches Préhistoriques no. 2, Université de Sciences et Techniques de Lille, Flandres/Artois.Google Scholar
Antoine, P., 1994. The Somme valley terrace system (northern France): a model of river response to Quaternary climatic variations since 800,000 bp. Terra Nova 6: 453464.Google Scholar
Antoine, P., Lautridou, J.P. & Laurent, M., 2000. Long-term fluvial archives in NW France: response of the Seine and Somme rivers to tectonic movements, climate variations and sea-level changes. Geomorphology 33: 183207.Google Scholar
Atkinson, T.C., Briffa, K.R. & Coope, G.R., 1987. Seasonal temperatures in Britain during the past 22 000 year, reconstructed using beetle remains. Nature 325: 587592.Google Scholar
Bar-Yosef, O., 1998. Early colonizations and cultural continuities in the Lower Palaeolithic of western Asia. In: Petraglia, M.D. & Korisettar, R. (eds): Early Human Behaviour in Global Context. Routledge (London): 221279.Google Scholar
Bates, M.R., 1994. Quaternary aminostratigraphy in northwestern France. Quaternary Science Reviews 12: 793809.CrossRefGoogle Scholar
Bates, M.R., 2001 The meeting of the waters: raised beaches and river gravels of the Sussex Coastal Plain/Hampshire Basin. In: Wenban-Smith, F.F. & Hosfield, R.T. (Eds): Palaeolithic archaeology of the Solent River. Lithic Studies Society Occasional Paper 7. Lithic Studies Society (London): 2745.Google Scholar
Beaumont, P. & Morris, D., 1990. Guide to the archaeological sites in the Northern Cape. McGregor Museum, Kimberley, South Africa.Google Scholar
Benito, G., Gutiérrez, F., Pérez-González, A. & Macado, M.J., 2000. Geomorphological and sedimentological features in Quaternary fluvial systems affected by solution-induced subsidence (Ebro basin, NE-Spain). Geomorphology 33: 209224.Google Scholar
Benda, L. (ed.) 1995. Das Quartär Deutschlands. Gebrüder Borntraeger (Berlin): 408 pp.Google Scholar
Bergeing, J.P. & Gilliard, P. 1997. Geomorphologie des terrasses du fleuve Niger à la latitude du Parc National du W, Niger. Zeitschrift für Geomorphologie N.F. 41: 491504.Google Scholar
Bibus, E., 1980. Zur Relief-, Boden- und Sedimententwicklung am unteren Mittelrhein. Frankfurter geowissenschaftliche Arbeiten, Serie D 1: 296 pp.Google Scholar
Bibus, E. & Wesler, J., 1995. The middle Neckar as an example of fluviomorphological processes during the Late Quaternary Period. Zeitschrift für Geomorphologie N.F. Supplement Band 100: 1526.Google Scholar
Bishop, P., 1995. Drainage rearrangement by river capture, beheading and diversion. Progress in Physical Geography 19: 449473.Google Scholar
Bishop, P. & Brown, R., 1992. Denudational isostatic rebound of intraplate highlands: the Lachlan River valley, Australia. Earth Surface Processes and Landforms 17: 345360.Google Scholar
Bishop, P., Young, R.W. & McDougall, I., 1985. Stream profile change and longterm landscape evolution: early Miocene and modern rivers of the East Australian highland crest, central New South Wales, Australia. Journal of Geology 93: 455471.Google Scholar
Blackwell, B. & Schwarcz, H.P., 1986. U-Series analyses of the Lower Travertine at Ehringsdorf, DDR. Quaternary Research 25:215222.Google Scholar
Blüberger, G., 1996. Wie die Donau nach Wien kam. Von den Quellen bis zur Hainburger Pforte. Böhlau Verlag (Vienna): 285 pp.Google Scholar
Blum, M.D. & Straffin, E.C., 2001. Fluvial responses to external forcing: Examples from the French Massif Central, the Texas Coastal Plain (USA), the Sahara of Tunisia, and the Lower Mississippi Valley (USA). In: Maddy, D., Macklin, M.G. & Woodward, J. (Eds): River Basin Sediments Systems: Archives of Environmental Change. Balkema (Rotterdam): 195228.Google Scholar
Bowen, D.Q., Hughes, S., Sykes, G.A. & Miller, G.H., 1989. Land-sea correlations in the Pleistocene based on isoleucine epimerization in non-marine molluscs. Nature 340: 4951.Google Scholar
Bowen, D.Q., Sykes, G.A., Maddy, D., Bridgland, D.R. & Lewis, S.G., 1995. Aminostratigraphy and amino acid geochronology of English lowland valleys: the Lower Thames in context. In: Bridgland, D.R., Allen, P. & Haggert, B.A. (Eds): The Quaternary of the lower reaches of the Thames, Quaternary Research Association Field Guide (Durham): 6163.Google Scholar
Bridgland, D.R., 1994. Quaternary of the Thames. Chapman & Hall (London): 441 pp.Google Scholar
Bridgland, D.R., 2000. River terrace systems in north-west Europe: an archive of environmental change, uplift and early human occupation. Quaternary Science Reviews 19: 12931303.Google Scholar
Bridgland, D.R. & D’Olier, B., 1995. The Pleistocene evolution of the Thames and Rhine drainage systems in the southern North Sea Basin. In: Preece, R.C. (ed.): Island Britain: a Quaternary Perspective. Geological Society of London Special Publication No. 96: 2745.Google Scholar
Bridgland, D.R., Preece, R.C., Roe, H.M., Tipping, R.M., Coope, G.R., Field, M.H., Robinson, J.E., Schreve, D.C. & Crowe, K., 2001. Middle Pleistocene interglacial deposits at Barling, Essex, UK: evidence for a longer chronology for the Thames terrace sequence. Journal of Quaternary Science 16: 813840.Google Scholar
Bridgland, D.R. & Schreve, D.C. 2001. River terrace formation in synchrony with long-term climatic fluctuation: examples from southern Britain. In: Maddy, D., Macklin, M. & Woodward, J. (Eds): River Basin Sediments Systems: Archives of Environmental Change. Balkema (Rotterdam): 229248.Google Scholar
Brunnacker, K., Löscher, M., Tillmans, W. & Urban, B., 1982. Correlation of the Quaternary terrace sequence in the lower Rhine valley and northern Alpine foothills of central Europe. Quaternary Research 18: 152173.Google Scholar
Bull, W.B., 1991. Geomorphic Responses to Climatic Change. Oxford University Press: 326 pp.Google Scholar
Bull, W.B. & Kneupfler, P.L.K., 1987. Adjustments by the Char-well River, New Zealand, to uplift and climatic changes. Geomorphology 1: 1532.Google Scholar
Bunbury, J.M., Hall, L., Anderson, G.J. & Stannard, A., 2001. The determination of fault movement history from the interaction of drainage with volcanic episodes. Geological Magazine 138: 185192.Google Scholar
Burbank, D.W., Leland, J., Fielding, E., Anderson, R.S., Brozovic, N., Reid, M.R. & Duncan, C. 1996. Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature 379: 505510.Google Scholar
Butzer, K.W., Helgren, D.M., Fock, G.J. & Stuckenrath, R., 1973. Alluvial terraces of the lower Vaal River, South Africa: a reappraisal and reinterpretation. Journal of Geology 81: 341362.Google Scholar
Campbell, K., Frailey, C. & Arellano, J., 1985. The geology of the Rio Beni: further evidence for Holocene flooding in Amazonia. Science 364: 118.Google Scholar
Conway, B., McNabb, J. & Ashton, N., 1996. Excavations at Barn-field Pit, Swanscombe, 1968–72. British Museum, London, occasional paper 94: 266 pp.Google Scholar
Coope, G.R. 2001. Biostratigraphical distinction of interglacial coleopteran assemblages from southern Britain attributed to Oxygen Isotope Stages 5e and 7. Quaternary Science Reviews 20: 17171722.Google Scholar
Corvinus, G., 1998. Lower Palaeolithic occupations in Nepal in relation to South Asia. In: Petraglia, M.D. & Korisettar, R. (eds): Early Human Behaviour in Global Context. Routledge (London): 391417.Google Scholar
De Mauro, C.A. & Christofoletti, A., 1984. Aspectos fisico-geograficos da Regiao Administrativa de Aracatuba. Geociencias (Sao Paulo) 3: 139167.Google Scholar
Diaz del Olmo, F., Vallespi, E., Baena, R. & Recio, J.M., 1989. Terrazas pleistocenas del Guadalquivir occidental: geomorfologia, suelos, paleosuelos y secuencia cultural. In: El Cuaternario en Andalucía occidentale, AEQUA, Sevilla, Monografías 1: 3342.Google Scholar
Diaz del Olmo, F. Vallespi, E. & Baena Escudero, R., 1993. Cuaternario y secuencia paleolítica en las terrazas del bajo y medio-Guadalquivir: aluvionamientos, coluviones, suelos y paleosuelos. VI Jornadas de Arqueología Andaluza. Junta de Andalucia, Huelva.Google Scholar
Dodonov, A.E., Deviatkin, E.V., Ranov, V.A., Khatib, K. & Nseir, H., 1993. The Latamne Formation in the Orontes river valley. In: Sanlaville, P., Besançon, J., Copeland, L. & Muhesen, S. (eds): Le Paléolithique de la vallée moyenne de l’Oronte (Syrie): Peuplement et environnement. British Archaeological Review, International Series, 587: 189194.Google Scholar
Domas, J., 1994. The Late Cenozoic of the Al Ghab Rift, NW Syria. Antropoziokum 21: 5773.Google Scholar
Dykan, N., 1999. Extent of Pleistocene freshwater and estuarine Ostracoda in the territory of Ukraine. Geological Journal (Ukraine) 3: 5559.Google Scholar
Feibel, C.S. Kingston, J.D. & Ashley, G.M., 1999. Environmental change and early human evolution in East Africa: aspects of geological context and sampling. Book of Abstracts, XV INQUA Congress, Durban, South Africa: 6061.Google Scholar
Fejfar, O. & Heinrich, W.D., 1983. Arvolicoden-Sukzession und Biostratigraphie des Oberpliozäns und Quatärs in Europe. Schriften Reihe geologische Wissenschaften 19/20: 61109.Google Scholar
Fink, J., Koci, A., Kohl, H. & Pevzner, M.A., 1979. Palaeomagnetic research in the northern foothills of the Alps and the question of correlation of terraces in the upper reach of the Danube. IGCP Project 73/1/24 - Quaternary Glaciations in the Northern Hemisphere, Rep. No. 5: 108116.Google Scholar
Fisk, H.N., 1951. Loess and Quaternary geology of the Lower Mississippi Valley. Journal of Geology 59: 333356.Google Scholar
Froese, D.G.. Barendregt, R.W., Enkin, R.J. & Baker, J., 2000. Paleomagnetism of late Cenozoic terraces of the lower Klondike valley, Yukon: Evidence for multiple late Pliocene-early Pleistocene glaciations. Canadian Journal of Earth Sciences 37: 863877.Google Scholar
Gabunia, L. & Vekua, A., 1995. A Plio-Pleistocene hominid from Dmansi, east Georgia, Caucasus. Nature 373: 509512.Google Scholar
Gibbard, P.L., 1985. The Pleistocene history of the Middle Thames Valley. Cambridge University Press: 155 pp.Google Scholar
Gibbard, P.L., 1988. The history of the great northwest European rivers during the past three million years. Philosophical Transactions of the Royal Society of London B318: 559602.Google Scholar
Gibbard, P.L., 1994. Pleistocene History of the Lower Thames Valley. Cambridge University Press: 229 pp.Google Scholar
Giles Pancheco, F., Santiago, A., Gutiérrez, J.M., Mata, E. & Aguilera, L., 1989. El poblamiento paleolitico en el valle del rio Gadalete. In: El Cuaternario en Andalucia occidentale, AEQUA, Sevilla: 4357.Google Scholar
Griffiths, H.I., 2001. Ostracod evolution and extinction - its biostratigraphic value in the European Quaternary. Quaternary Science Reviews 20: 17431751.Google Scholar
Halouzka, R. & Minarikova, D., 1977. Stratigraphie correlation of Pleistocene deposits of the River Danube in the Vienna and Komarno Basins. Antropozoikum 11: 755.Google Scholar
Harris, J.W.K., Williamson, P.G., Verniers, J., Tappen, M.J., Stewart, K., Helgren, D., de Heinzelin, J., Boaz, N. & Bellomo, R., 1987. Late Pliocene hominid occupation in Central Africa: the setting, context and character of the Senga 5A Site, Zaire. Journal of Human Evolution 16: 701728.CrossRefGoogle Scholar
Hattingh, J. & Rust, I.C., 1999. Drainage evolution and morphological development of the Late Cenozoic Sundays River, South Africa. In: Miller, A.J. & Gupta, A. (Eds): Varieties of Fluvial Form, Wiley (Chichester): 145166.Google Scholar
Hedburg, H.D., 1976. International stratigraphie guide. Wiley & Sons (NewYork): 200 ppGoogle Scholar
Helgren, D.M., 1978. Acheulian settlement along the lower Vaal River, South Africa. Journal of Archaeological Science 5: 3960.Google Scholar
Helgren, D.M., 1979. River of diamonds: an alluvial history of the lower Vaal basin. University of Chicago, Department of Geography Research Paper 185.Google Scholar
Hennig, G.J., Grün, R., Brunnacker, K. & Pecsi, M., 1983. Th-230/U-234 sowie ESR-Altersbestimmungen einiger Travertíne in Unharn. Eiszeitalter und Gegenwart 33: 919.Google Scholar
Horáček, I., 1990. On the context of Quaternary Arvicolid evolution: changes in community development. International Symposium on the Evolution, Phylogeny and Biostratigraphy of the Arvicolids: 201222.Google Scholar
Horáček, I. & Lozek, V., 1988. Paleozoology and the Mid-European Quaternary past: scope of approach and selected results. Rozpravy Èeskoslovenské Akademie Vid 98: 1102.Google Scholar
Howell, F.C., Haesaerts, P. & de Heinzelin, J., 1988. Depositional environments, archaeological occurrences and hominids from Members E and F of the Shungura Formation (Omo Basin, Ethiopia). Journal of Human Evolution 16: 665700.Google Scholar
Iriondo, M., 1980. El Cuaternario de Entre Rios. Revista de la Asociacion de Ciencias Naturales del Litoral 11: 125141.Google Scholar
Iriondo, M.H., 2000. The Neogene of the Llanos-Chaco-pampa Depression. Episodes 22: 226231.Google Scholar
Jain, M., Tandon, S.K., Bhatt, S.C., Singhvi, A.K. & Mishra, S., 1999. Alluvial and aeolian sequences along the River Luni, Barmer District: physical stratigraphy and feasibility of luminescence chronology methods. Memoir Geological Society of India, No 42: 273295.Google Scholar
Jain, M., Woodcock, N.H. & Tandon, S.K., 1998. Neotectonics of western India: evidence from deformed Quaternary fluvial sequences, Mahi River, Gujarat. Journal of the Geological Society, London 155: 897901.Google Scholar
Kale, V.S. & Rajaguru, S.N., 1987. Late Quaternary alluvial history of the north-western Deccan upland region. Nature 325: 612614.Google Scholar
Keen, D.H., 1990. Significance of the record provided by Pleistocene fluvial deposits and their included molluscan faunas for palaeoenvironmental reconstruction and stratigraphy: case study from the English Midlands. Palaeogeography, Palaeoclimatology, Palaeoecology 80: 2534.Google Scholar
Klostermann, J., 1992. Das Quartär der Niederrheinischen Bucht. Geologisches Landes-Amt, Krefeld: 200 pp.Google Scholar
Korisettar, R. & Rajaguru, S.N., 1998. Quaternary stratigraphy, palaeoclimate and the Lower Palaeolithic of India. In: Petraglia, M.D. & Korisettar, R. (Eds): Early Human Behaviour in Global Context. Routledge (London): 304342.Google Scholar
Kovanda, J., Smolikova, L. & Horacek, I., 1995. New data on four classic loess sections in Lower Austria. Antropoziokum 22: 6385.Google Scholar
Kroonenburg, S., Pessoa, M.R., Silvestre, L.A.L. & Pastana, J.M.D.N., 1981. Ignimbritas Pliopleistocenicas en el suroeste del Huila, Colombia y su influencia en el desarrollo morfologico. Revista CIAF 6, no.1-3: 293314.Google Scholar
Krzyszkowski, D. & Biernat, J., 1998. Terraces of the Bystrzyca river valley, Middle Sudates, and their deformation along the Sudetic Marginal Fault. Geologia Sudetica 31: 241258.Google Scholar
Krzyszkowski, D., Przybylski, B. & Badura, J., 1998. Late Cainozoic evolution of the Nysa K3odzka river system between K3odzko and Kamieniec Zlbkowicki, Sudates Mts, southwestern Poland. Geologia Sudetica 31: 133155.Google Scholar
Krzyszkowski, D., Przybylski, B. & Badura, J., 2000. The role of neotectonics and glaciations along the Nysa-Klodzka River in the Sudeten Mountains (southwestern Poland). Geomorphology 33: 149166.Google Scholar
Kukla, G.J., 1975. Loess stratigraphy of Central Europe. In: Butzer, K.W. & Isaac, G.L. (Eds): After the Australopithecines: Stratigraphy, Ecology and Culture Change in the Middle Pleistocene. Mouton (The Hague): 99188.Google Scholar
Kukla, G.J., 1977. Pleistocene land-sea correlations. I. Europe. Earth Science Reviews 13: 307374.Google Scholar
Kukla, G. & Cilek, V., 1996. Plio-Pleistocene megacycles: record of climate and tectonics. Palaeogeography, Palaeoclimatology, Palaeoecology 120: 171194.Google Scholar
Lautridou, J.P., Monnier, J.L., Morzadec-Kerfourn, M.T., Sommi, J. & Tuffreau, A., 1983. Les subdivisions du Pleistocène de la France septentrionale: stratigraphie et paleolithique. In: Billards, A., Conchon, O. & Shotton, F.W. (Eds): Quaternary glaciations in the Northern Hemisphere. IGCP Project 73–1-24. Report No. 9, Unesco International Geological Correlation Programme, Paris: 148170.Google Scholar
Lautridou, J.-P., Auffret, J.-P., Baltzer, A., Clet, M., Lécolle, F., Lefebvre, D., Lericolais, G., Roblin-Jouve, A., Balescu, S., Carpentier, G., Descombes, J.-C., Occhietti, S. & Rousseau, D.-D., 1999. The river Seine, the river Manche. Bulletin de la Société Géologique de France 170: 545558 (in French with English summary).Google Scholar
Leng, J., 1998. Early Palaeolithic quartz industries in China. In: Petraglia, M.D. & Korisettar, R. (Eds): Early Human Behaviour in Global Context. Routledge (London): 418436.Google Scholar
Lericolais, G., Auffret, J.P. & Bourillet, J.F., 1997. Evolution plioquaternaire du fleuve Manche: Stratigraphie et Géomorphologie de la confluence de la Paléo-Somme et de la Paléo-Seine. Academie de Sciences de France, Montpellier: 23 pp.Google Scholar
Li, J., 1991. The environmental effects of the uplift of the Qinghai-Xizang Plateau. Quaternary Science Reviews 10: 479483.Google Scholar
Lozek, V., 1964a. Quartärmollusken der Tschechoslowakei. Rozpravi Ustredniho ústavu geologického 31: 1347.Google Scholar
Lozek, V., 1964b. Neue Mollusken aus dem Altpleistozän Mittleeuropas. Archiv für Molluskenkunde 93: 193199.Google Scholar
McBrearty, S., 1999. The archaeology of the Kapthurin Formation. In Andrews, P. & Banham, P. (Eds): Late Cenozoic Environments and Hominid Evolution: a tribute to Bill Bishop. Geological Society, London: 143156.Google Scholar
Maddy, D., 1997. Uplift-driven valley incision and river terrace formation in southern England. Journal of Quaternary Science 12: 539545.Google Scholar
Maddy, D. & Bridgland, D.R., 2000. Accelerated uplift resulting from Anglian glacioisostatic rebound in the Middle Thames valley, UK: evidence from the terrace record. Quaternary Science Reviews 19: 15891604.Google Scholar
Maddy, D., Bridgland, D.R. & Green, C.P., 2000. Crustal instability and the development of certain English rivers. Geomorphology 33: 167181.Google Scholar
Maddy, D., Green, C.P., Lewis, S.G. & Bowen, D.Q., 1995. Pleistocene Geology of the Lower Severn Valley. Quaternary Science Reviews 14:209222.Google Scholar
Maddy, D., Keen, D.H., Bridgland, D.R. & Green, C.P., 1991. A revised model for the Pleistocene development of the River Avon, Warwickshire. Journal of the Geological Society of London 148: 473484.Google Scholar
Maddy, D., Lewis, S.G., Scaife, R.G., Bowen, D.Q., Coope, G.R., Green, C.P., Keen, D.H., Rees-Jones, J., Hardaker, T., Parfitt, S. & Scott, K., 1998. The upper Pleistocene deposits at Cassington, near Oxford U.K. Journal of Quaternary Science 13: 205231.Google Scholar
Mania, D., 1995. The earliest occupation of Europe: the Elbe-Saale region (Germany). In: Roebroeks, W. & Van Kolfschoten, T. (Eds): The Earliest Occupation of Europe. University of Leiden, The Netherlands: 85101.Google Scholar
Markova, A.K. & Mihailescu, C.D., 1994. Correlation of Pleistocene marine and continental deposits from the Northwestern Black Sea Region. Stratigraphy and Geological Correlation. Vol. 2, Nr.4. Moscow: 8795.Google Scholar
Mather, A.E., Sliva, P.G., Goy, J.L., Harvey, A.M. & Zazo, C., 1995. Tectonics versus climate: an example from late Quaternary aggradational and dissectinal sequences of the Mula basin, southeast Spain. In: Lewin, J., Macklin, M.G. & Woodward, J.C. (eds): Mediterranean Quaternary river environments. Balkema (Rotterdam): 7787.Google Scholar
A.V. Matoshko, P.F. Gozhik, & Ivchenko, A.S., 2002. This volume. The fluvial archive of the Middle and Lower Dnieper (a review).Google Scholar
Meijer, T. & Preece, R.C., 2000. A review of the occurrence of Corbicula in the Pleistocene of North-West Europe. Geologie en Mijnbouw/Netherlands Journal of Geosciences 79: 241255.Google Scholar
Merritts, D.J., Vincent, K.R. & Wohl, E.E., 1994. Long river profiles, tectonism, and eustasy: a guide to interpreting fluvial terraces. Journal of Geophysical Research 99: 14,031-14,050.Google Scholar
Miller, G.H., Hollin, J.T. & Andrews, J., 1979. Aminostratigraphy of UK Pleistocene deposits. Nature 281: 539543.Google Scholar
Mishra, S., 1991. Prehistoric and Quaternary studies at Nevasa: the last forty years. Memoirs of the Geological Society of India, No 32: 324332.Google Scholar
Mishra, S., 1992. The age of the Acheulian in India: new evidence. Current Anthropology 33, 325328.Google Scholar
Mishra, S., 1994. The South Asian Lower Palaeolithic. Man and Environment 19: 5772.Google Scholar
Nanson, G.C., East, T.J. & Roberts, R.G., 1993. Quaternary stratigraphy, geochronology and evolution of the Magela Creek catchment in the monsoon tropics of northern Australia. Sedimentary Geology 83: 277302.Google Scholar
Nanson, G.C., Coleman, M. & Price, D.M., 1999. Alluvial and aeolian evidence for major drainage disruption and changes in wind direction during the last full glacial cycle in central Australia. Book of Abstracts, XV INQUA Congress, Durban, South Africa: 130131.Google Scholar
NACSN [North American Commission on Stratigraphie Nomenclature] 1983. North American Stratigraphie Code. American Association of Petroleum Geologists, Bulletin 67: 841875.Google Scholar
Niculescu, G.H., 1963. Terasele Teleajenului in zona subcarpatia cu privire speciala cesupra miscarilar neotectonice cua temare. Proberma de geografia 9: 5783.Google Scholar
Oches, E.A. & McCoy, W.D., 1995. Aminostratigraphic evaluation of conflicting age estimates for the ‘Young Loess’ of Hungary. Quaternary Research 44: 160170.Google Scholar
Oches, E.A., McCoy, W.D. & Gnieser, D., 2000. Aminostratigraphic correlation of loess-paleosol sequences across Europe. In: Goodfriend, G.A., Collins, M.J., Fogel, M.L., Macko, S.A. & Wehmiller, J.F. (eds): Perspectives in amino acid and protein geochemistry. Oxford University Press (NewYork): 331348.Google Scholar
Ochietti, S. & Long, B., 1999. Middle to Upper Quaternary facies successions and depositional systems in the St Lawrence Basin. Programme & Abstracts, IGCP 396 4m Annual Conference, Cape Town, South Africa: 28.Google Scholar
Ozaner, F., 1992. Detecting the polycyclic drainage evolution in Kula region (western Turkey) using aerial photographs. ITC Journal 1992-3: 249253.Google Scholar
Pastre, J-F., Derive, E., Gablier, F. & Lageat, Y. 1997. Changements hydrographiques et volcanisme plio-quaternaire dans les bassins de la Loire et de l’Allier (Massif central, France). Géographie physique et quaternaire 51:295314.Google Scholar
Pastre, J-F. & Leroyer, C. 1997. La capture du Grand-Morin par la Marne, (Bassin parisien, France): âge et mécanisme. Géographie physique et quaternaire 51: 347350.Google Scholar
Paulissen, E. & Vermeersch, P.M., 1987. Earth, Man and climate in the Egyptian Nile valley during the Pleistocene. In: Close, A.E. (ed.): Prehistory of Arid North Africa, Southern Methodist University Press: 2967.Google Scholar
Pazzaglia, F.J. & Gardner, T. 1994. Late Cenozoic flexural deformation of the middle U.S. Atlantic passive margin. Journal of Geophysical Research 99: 12,14312,157.Google Scholar
Perkins, N.K. & Rhodes, E.J., 1994. Optical dating of fluvial sediments from Tattershall U.K. Quaternary Science Reviews 13: 517520.Google Scholar
Petraglia, M.D., 1998. The Lower Palaeolithic of India and its bearing on the Asian record. In: Petraglia, M.D. & Korisettar, R. (Eds): Early Human Behaviour in Global Context. Routledge (London): 343390.Google Scholar
Pissart, A., Harmond, D. & Krook, L., 1997. L’évolution de la Meuse de Toul à Maastricht depuis le Miocène: correlations chronologiques et traces des captures de la Meuse lorraine d’après les minéreux denses. Géographie physique et quaternaire 51:267284.Google Scholar
Pike, K. & Godwin, H., 1953. The interglacial at Clacton-on-Sea. Quarterly Journal of the Geological Society of London 108: 1122.Google Scholar
Porter, S.C. An, Z. & Zheng, H., 1992. Cyclic Quaternary alluviation and terracing in a nonglaciated drainage basin on the north flank of the Qinling Shan, central China. Quaternary Research 38: 157169.Google Scholar
Preece, R.C., 1995. Mollusca from interglacial sediments at three critical sites in the Lower Thames. In: Bridgland, D.R., Allen, P. & Haggart, B.A. (Eds): The Quaternary of the lower reaches of the Thames. Field Guide, Quaternary Research Association (Durham): 5560.Google Scholar
Preece, R.C., 1999. Mollusca from the Last interglacial fluvial deposits at Trafalgar Square, London. Journal of Quaternary Science 14:7789.Google Scholar
Preece, R.C. & Parfitt, S.A., 2000. The Cromer Forest Bed Formation: new thoughts on an old problem. In: Lewis, S.G., Whiteman, C.A. & Preece, R.C. (Eds): The Quaternary of Norfolk and Suffolk. Field Guide, Quaternary Research Association (London): 127.Google Scholar
Rabeder, G., 1974. Die Kleinsäugerfauna des Jungpliozäns von Stranzendorf. Mitteilung Quartärkommission Österreichische Akademie Wissenschaften 1: 137139.Google Scholar
Rabeder, G., 1981. Die Arvicoliden (Rodentia, Mammalia) aus dem Pliozän und dem älteren Pleistozän von Niederösterreich. Beiträge Paläontologie Österreich 8: 1337.Google Scholar
Raposo, L., 1993. L’Acheuléen dans la vallée du Tage, au Portugal. Publ, du CERP, 4, Université des Sciences et Technologies de Lille.Google Scholar
Raposo, L.& Santonja, M., 1995. The earliest occupation of Europe: the Iberian Penisuia. In: Roebroeks, W. & Van Kolfschoten, T. (Eds): The Earliest Occupation of Europe. University of Leiden, The Netherlands: 725.Google Scholar
Richards, D.A. & Smart, P.L., 1991. Potassium-argon and argon-argon dating. In: Smart, P.L. & Frances, P.D. (Eds): Quaternary Dating Methods - A User’s Guide. Quaternary Research Association Technical Guide No.4. Quaternary Research Association (Cambridge): 3744.Google Scholar
Rodbell, D.T. & Forman, S.L., In press. Loess and paleosol stratigraphy, magnetic susceptibility, and thermoluminescence age estimates of Mississippi Valley loess in western Tennessee: The Geological Society of America Bulletin.Google Scholar
Roebroeks, W. & Van Kolfschoten, T. (Eds), 1995. The Earliest Occupation of Europe. University of Leiden, The Netherlands: 332 pp.Google Scholar
Rohde, P., 1989. Elf pleistozäne Sand-Kies-Terrassen der Weser: Erläuterung eines Gliederungsschemas für das obere Weser-Tal. Eiszeitalter und Gegenwart 39: 2456.Google Scholar
Ruegg, G.H.J., 1994. Alluvial architecture of the Quaternary Rhine-Meuse river system in the Netherlands. Geologie en Mijnbouw 72: 321330.Google Scholar
Said, R., 1993. The River Nile. Geology, Hydrology and Utilization. Pergamon Press (Oxford): 320 pp.Google Scholar
Salama, R., 1999. The evolution of the River Nile in Sudan. Book of Abstracts, XV INQUA Congress, Durban, South Africa: 155156.Google Scholar
Saryca, N., 2000. The Plio-Pleistocene age of the Büyük Menderes and Gediz grabens and their tectonic significance on N-S extensional tectonics in West Anatolia: mammalian evidence from the continental deposits. Geological Journal 35: 124.Google Scholar
Sanver, M., 1968. A palaeomagnetic study of Quaternary volcanic rocks from Turkey. Physics of the Earth and Planetary Interiors 1:403421.CrossRefGoogle Scholar
Sandford, K.S., 1934. Paleolthic Man and the Nile Valley in Upper and Middle Egypt. Chicago: Chicago University Press, Oriental Publication 3: 1131.Google Scholar
Santonja, M., Moissenet, E. & Pérez Gonzales, A., 1992. Cuesta de la Bajada (Teruel). Nuevo sitio Paleolitico inferior. Boletín del Seminario de Estudios de Arte y Arqueología 58: 2545.Google Scholar
Santonja, M. & Pérez Gonzales, A., 1984. Las industrias paleoliticas de La Maya en su ámbito regional. Excavaciones Arqueológicas en Espana, 135. Ministerio de Cultura, Madrid.Google Scholar
Santonja, M. & Villa, P., 1990. The Lower Paleolithic of Spain and Portugal. Journal of World Prehistory 4: 4594.Google Scholar
Saucier, R.T., 1996. Geomorphology and Quaternary geologic history of the Lower Mississippi Valley. U.S. Army Corps of Engineers (Vicksburg): 364 pp.Google Scholar
Schmidt, U., 1996. Sedimente und Fossiliendes Jungpleistozäns im nördlichen Ruanda. Stuttgart: Zentralblatt Geologie Paläontologie Teil I: 849857.Google Scholar
Schmidt, U. & Neuffer, Fr.-O., 1995. Zr Hydrogeographie Ruandas. Die pleistozänen Sedimente von Massangano. Stuttgart: Zentralblatt Geologie Paläontologie Teil I: 487494.Google Scholar
Schreve, D.C., 2001. Differentiation of the British late Middle Pleistocene interglacials: the evidence from mammalian biostratigraphy. Quaternary Science Reviews 20: 16931705.Google Scholar
Schwarcz, H.P., Grün, R., Latham, A.G., Mania, D. & Brunnacker, K., 1988. The Bilzingsleben Archaeological Site: New Dating Evidence. Archaeometry 30: 517.Google Scholar
Semaw, S., Renne, P. Harris, J.W.K., Feibel, C.S. Bernor, R.L., Fesseha, N. & Mowbray, K., 1997. 2.5 million-year-old stone tools from Gona, Ethiopia. Nature 385: 333336.Google Scholar
Shackleton, N.J., Berger, A. & Peltier, W.R., 1990. An Alternative Astronomical Calibration of the Lower Pleistocene Timescale Based on ODP Site 677. Transactions of the Royal Society of Edinburgh 81: 252261.Google Scholar
Sher, A.V., Giterman, R.Y., Zazhigin, V.S. & Kiselev, S.V., 1977. New data on the Late Cenozoic deposits of the Kolyma Lowland. Akademie Nauk SSSR Izvesti Seriya Geolozh 5: 6983. (In Russian)Google Scholar
Smart, P.L., 1991. General principles. In: Smart, P.L. & Francis, P.D. (Eds): Quaternary Dating Methods, a User’s Guide. Technical Guide 4, Quaternary Research Association (Cambridge): 115.Google Scholar
Stathopolos, L. & Hare, P.E., 1993. Bleach removes labile amino acids from deep sea planktonic foraminifera. Journal of Foraminiferal Research 23: 102107.Google Scholar
Sugai, T., 1993. River terrace development by concurrent fluvial processes and climatic changes. Geomorphology 6: 243252.Google Scholar
Sykes, G.A., Collins, M.J. & Walton, D.I., 1995. The significance of a geochemically isolated (intracrystalline) organic fraction within biominerals. Organic Geochemistry 23: 10591106.Google Scholar
Thomas, G.N., 2001. Late Middle Pleistocene pollen biostratigraphy in Britain: pitfalls and possibilities in the separation of interglacial sequences. Quaternary Science Reviews 20: 16211630.Google Scholar
Tuffreau, A. & Antoine, P., 1996. The earliest occupation of Europe: Continental Northwestern Europe. In: Roebroeks, W. and Van Kolfschoten, T. (Eds): The Earliest Occupation of Europe. University of Leiden, The Netherlands: 147163.Google Scholar
Tyràcek, J., 1983. River terraces - important paleoclimatic indicator. In: Billards, O., Conchon, O., & Shotton, F.W. (eds) Quaternary glaciations in the Northern Hemisphere. IGCP Project 73–1-24. Report No. 9, Unesco International Geological Correlation Programme, Paris: 3441.Google Scholar
Tyràcek, J., 1987. Terraces of the Euphrates River. Sbornik geologickych ved 18: 185202.Google Scholar
Tyràcek, J., 1995. Stratigraphy of the Ohøe River terraces in the Most Basin. Sbornik geologickych ved 22: 1157.Google Scholar
Tyràcek, J., 2001a. Upper Cenozoic fluvial history in the Bohemian Massif. Quaternary International 79: 3753.Google Scholar
Tyràcek, J., 2001b. Quaternary of the Milnik Area: Excursion Guide. Czech Geological Survey, Prague, ISBN 80-7075-518-0, 17 pp.Google Scholar
Tzedakis, P.C., Andrieu, V., de Beaulieu, J.-L., Crowhurst, S., Follieri, M., Hooghiemstra, H., Magri, D., Reille, M., Sadori, L., Shackleton, N.J. & Wijmstra, T.A., 1997. Comparison of terrestrial and marine records of changing climate of the last 500,000 years. Earth and Planetary Science Letters 150: 171176.Google Scholar
Ünay, E., Emre, Ö., Erkal, T. & Keçer, M., 2001. The rodent fauna from the Adapazary pull-apart basin (NW Anatolia): its bearing on the age of the North Anatolian fault. Geodinamica Acta 14: 169175.Google Scholar
Urban, B., 1995. Palynological evidence of younger Middle Pleistocene interglacials (Holsteinian, Reinsdorf and Schöningen) in the Schöningen open cast lignite mine (eastern Lower Saxony, Germany). Mededelingen Rijks Geologische Dienst 52: 175185.Google Scholar
Van den Berg, M.W., 1994. Neo-tectonics in the Roer Valley Rift System. Style and rate of crustal deformation inferred from syntectonic sedimentation. Geologie en Mijnbouw 73: 143156.Google Scholar
Van den Berg, M.W., 1996. Fluvial sequences of the Maas: a lOMa record of neotectonics and climate change at various time-scales. Thesis, University of Wageningen: 181 pp.Google Scholar
Vandenberghe, J., 1995. Timescales, climate and river development. Quaternary Science Reviews 14: 631638.Google Scholar
Van den Boogard, C., Van den Boogard, P. & Schmincke, H.-U., 1989. Quartärgeologisch-tephrostratigraphische Neuaufnahme und Interpretation des Pleistozänprofils Kärlich, F.R.G. Eiszeitalter und Gegenwart 39: 6286.Google Scholar
Van Kolfschoten, T. & Turner, E., 1996. Early Middle Pleistocene mammalian faunas from Kärlich and Miesenheim I and their biostratigraphical implications. In: Turner, C. (ed.): The early Middle Pleistocene in Europe. Balkema (Rotterdam): 211253.Google Scholar
Van Liere, W.J., 1960/1. Observations on the Quaternary of Syria. Berichten van de Rijksdienst voor het Oudheidkundig Bodemonderzoek 10 & 11: 769.Google Scholar
Veldkamp, A., 1992. A 3-D model of Quaternary terrace development, simulations of terrace stratigraphy and valley asymmetry: a case study for the Allier terraces (Limagne, France). Earth Surface Processes & Landforms 17: 487500.Google Scholar
Veldkamp, A. & Kroonenberg, S.B., 1993. The Late Quaternary terrace chronology of the Allier. Geologie en Mijnbouw 72: 179192.Google Scholar
Veldkamp, A. & Van den Berg, M.W. 1993. Three-dimensional modelling of Quaternary fluvial dynamics in a climo-tectonic depenent system. A case study of the Maas record (Maastricht, The Netherlands). Global and Planetary Change 8: 203218.Google Scholar
Veldkamp, A. & Van Dijke, J.J., 1998. Modelling long-term erosion and sedimentation processes in fluvial systems: A case study for the Allier/Loire system. In: Benito, G., Baker, V.R. & Gregory, K.J. (Eds): Palaeohydrology and environmental change. Wiley (Chichester): 5366.Google Scholar
Veldkamp, A. & Van Dijke, J.J., 2000. Simulating internal and external controls on fluvial terrace stratigraphy: a qualitative comparison with the Maas record. Geomorphology 33: 225236.Google Scholar
Velegrakis, A.F., Dix, J.K. & Collins, M.B., 1999. Late Quaternary evolution of the upper reaches of the Solent River, Southern England, based upon marine geophysical evidence. Journal of the Geological Society 156: 7387.Google Scholar
Veklich, M.F., Matviishina, Z.N. & Ivchenko, A.S., 1993. Stratigraphical schemes of the Pliocene and Pleistocene sediments of Ukraine (in Russian), Naukova Dumka, Kiev: 76 pp.Google Scholar
Wayland, E.J., 1934. Rifts, rivers, rains, and early man in Uganda. Royal Anthropological Institute Journal 6: 64.Google Scholar
Wendorf, F. & Schild, R., 1976. Prehistory of the Nile Valley. Academic Press (NewYork) : 404 pp.Google Scholar
West, R.G., 1956. The Quaternary deposits at Hoxne, Suffolk. Philosophical Transactions of the Royal Society of London B239: 265356.Google Scholar
Westaway, R., Maddy, D. & Bridgland, D., 2002. Flow in the lower continental crust as a mechanism for the Quaternary uplift of south-east England: constraints from the Thames terrace record. Quaternary Science Reviews 21: 559603.Google Scholar
Winguth, C., Wong, H.K., Panin, N., Dinu, C. Georgescu, P., Ungureanu, G., Krugliakov, V.V. & Podshuveit, V. 2000. Upper Quaternary water level history and sedimentation in the northwestern Black Sea. Marine Geology 167: 127146.Google Scholar
Wymer, J.J., 1968. Lower Palaeolithic Archaeology in Britain, as represented by the Thames Valley. John Baker (London): 429 pp.Google Scholar
Wymer, J.J., 1988. Palaeolithic archaeology and the British Quaternary sequence. Quaternary Science Reviews 7: 7998.Google Scholar
Wymer, J.J., 1999. The Lower Palaeolithic occupation on Britain. Wessex Archaeology and English Heritage (Salisbury) : 234 pp + 2nd volume of maps.Google Scholar
Yamskikh, A.F., 1996. Late Quaternary intra-continental river palaeohydrology and polycyclic terrace formation: the example of south Siberian river valleys. In: Branson, J., Brown, A.G. & Gregory, K.J. (Eds): Global Continental Changes: the Context of Palaeohydrology. Geological Society Special Publication No. 115: 181190.Google Scholar
Yim, W.W., 1994. Offshore Quaternary sediments and their engineering significance in Hong Kong. Engineering Geology 37: 3150.Google Scholar
Zagwijn, W.H., 1985. An outline of the Quaternary stratigraphy of The Netherlands. Geologie en Mijnbouw 64: 1724.Google Scholar
Záruba, Q., 1942. Podélny profil Vltavskymi terasami mezi Kamykem a Veltrusy. Rozpravy Ceské Akademie Ved, trida II, 52, 9, 139.Google Scholar
Zeman, A., 1982. The main terrace of the Morava River and its relationship to loess sections. IGCP Project 73/1/24 - Quaternary Glaciations in the Northern Hemisphere, Rep. No. 7: 253256.Google Scholar
Zöller, L., Oches, E.A. & McCoy, W.D., 1994. Towards a revised chronostratigraphy of loess in Austria with respect to key sections in the Czech Republic and Hungary. Quaternary Geochronology 13: 465472.Google Scholar
Zuchiewicz, W., 1992. Pozycja stratygraficzna tarasow Dunajca w Karpatach Zachodnich (English summary). Przeglad Geologiczny (Warszawa) 40 (7): 436445.Google Scholar
Zuchiewicz, W. & Butrym, J., 1990. Stratigraphy of Quaternary deposits of Roznów foothills, Polish West Carpathians. Studia Geomorphologica Carpatho-Balcanica (Kraków) 24: 3348.Google Scholar