Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T23:49:23.178Z Has data issue: false hasContentIssue false

Geochemistry of marine and lacustrine bands in the Upper Carboniferous of the Netherlands

Published online by Cambridge University Press:  01 April 2016

H. Kombrink*
Affiliation:
Utrecht University, Faculty of Geosciences, Stratigraphy and Paleontology, Budapestlaan 4, 3584 CD Utrecht, the Netherlands.
B.J.H. van Os
Affiliation:
Rijksdienst voor Archeologie, Cultuurlandschap en Monumenten (RACM), P.O. Box 1600, 3800 BP Amersfoort, the Netherlands
C.J. van der Zwan
Affiliation:
Shell Technology India, RMZ Centennial Campus B No. 8 Kundanahali Main road, Bangalore 560048, India
Th.E. Wong
Affiliation:
Utrecht University, Faculty of Geosciences, Stratigraphy and Paleontology, Budapestlaan 4, 3584 CD Utrecht, the Netherlands.
*
1Corresponding author. TNO Built Environment and Geosciences - Geological Survey of the Netherlands, Princetonlaan 6, 3584 CB Utrecht, the Netherlands. Email:[email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Geochemical studies on Upper Carboniferous marine bands showed that marked enrichment in redox-sensitive trace elements (uranium (U), vanadium (V), molybdenum (Mo)) mostly occur if they contain Goniatites. Goniatites indicate deposition in relatively distal and deep marine environments. In contrast, Westphalian marine bands found in the Netherlands predominantly show a Lingula facies, indicating deposition in a nearshore environment. These Lingula marine bands are mostly lacking significant trace element enrichments. The aim of this paper is to explain the mechanisms causing the differences in geochemical characteristics between distal (Goniatites facies) and proximal (Lingula facies) marine bands. Geochemical analyses (total organic carbon (TOC), sulfur (S), major and trace elements) were carried out on a selection of these marine bands. Furthermore, a comparison was made with some lacustrine bands which broadly show the same sedimentary development as the Lingula marine bands. The results show that the Lingula marine bands, in contrast to the Goniatites and lacustrine bands, are characterised by low organic carbon contents (1 – 2 wt.%). A relatively high input of siliciclastics probably prevented the accumulation of organic-rich layers (dilution effect). In turn, low organic carbon contents most likely prevented the effective scavenging of trace elements. Although the lacustrine bands are characterised by high TOC contents, here the limited availability of trace elements in fresh water forms the best explanation for low trace metal enrichments. Since marine bands form stratigraphically important horizons in the Upper Carboniferous, many attempts have been made to recognise marine bands using well logs (gamma-ray). The results from this study show that using gamma-ray devices (detecting U-enrichments), only marine bands in a Goniatites facies are clearly recognised while Lingula marine bands are not detected.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2008

References

Adams, J.A. & Weaver, C.E., 1958. Thorium-uranium ratios as indicators of sedimentary processes: example of concept of geochemical facies. Bulletin American Association of Petroleum Geologists 42: 387430.Google Scholar
Algeo, T.J. & Maynard, J.B., 2004. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology 206: 289318.CrossRefGoogle Scholar
Algeo, T.J., Schwark, L. & Hower, J.C., 2004. High-resolution geochemistry and sequence stratigraphy of the Hushpuckney Shale (Swope Formation, eastern Kansas); implications for climato-environmental dynamics of the Late Pennsylvanian Midcontinent Seaway. Chemical Geology 206: 259288.CrossRefGoogle Scholar
Anderson, R.F., LeHuray, A.P., Fleisher, M.Q. & Murray, J.W., 1989. Uranium deposition in Saanich Inlet sediments, Vancouver Island. Geochimica et Cosmochimica Acta 53: 22052213.Google Scholar
Archard, G. & Trice, R., 1990. A preliminary investigation into the spectral radiation of the Upper Carboniferous marine bands and its stratigraphic application. Newsletters on Stratigraphy 21: 167173.Google Scholar
Berner, R.A. & Raiswell, R., 1984. C/S method for distinguishing freshwater from marine sedimentary rocks. Geology 12: 365368.2.0.CO;2>CrossRefGoogle Scholar
Bloxham, T.W. & Thomas, R.L., 1969. Palaeontological and geochemical facies in the Gastrioceras subcrenatum marine-band and associated rocks from North Crop of the South Wales Coalfield. Quaterly Journal of Geological Society, London 124: 239281.Google Scholar
Calver, M.A., 1969. Westphalian of Britain. Compte Rendu Congres International de Stratigraphie et de Geologie du Carbonifere 1: 233254.Google Scholar
Chou, C.L., 1984. Relationship between geochemistry of coal and the nature of strata overlying the Herin Coal in the Illinois Basin, USA. Memoir of the Geological Society of China 6: 269280.Google Scholar
Jr.Coveney, R.M., Watney, W.L. & Maples, C.G., 1991. Contrasting depositional models for Pennsylvanian black shale discerned from molybdenum abundances. Geology 19: 147150.Google Scholar
Cruse, A.M. & Lyons, T.W., 2004. Trace metal records of regional paleoenvironmental variability in Pennsylvanian (Upper Carboniferous) black shales. Chemical Geology 206: 319345.Google Scholar
Davidson, C.F. & Ponsford, D.R.A., 1954. On the occurrence of uranium in coals. Mining Magazine 91: 265273.Google Scholar
Davies, S.J. & McLean, D., 1996. Spectral gamma-ray and palynological characterization of Kinderscoutian marine bands in the Namurian of the Pennine Basin. Proceedings of the Yorkshire Geological Society 51: 103114.Google Scholar
Dellwig, O., 1999. Geochemistry of Holocene coastal deposits (NW Germany): Palaeoenvironmental reconstruction. Carl von Ossietzky Universität (Oldenburg): 297 pp.Google Scholar
Diessel, C.F.K., 1992. Coal-bearing depositional systems. Springer-Verlag (Berlin): 721 pp.Google Scholar
Dill, H.G. & Pöhlmann, H., 2002. Chemical composition and mineral matter of paratic and limnic coal types of lignite through anthracite rank (Germany). Carboniferous and Permian of the world; XIV ICCP Memoir Canadian Society of Petroleum Geologists 19: 851867.Google Scholar
Drozdzewski, G., 2005. Zur sedimentären Entwicklung des Subvariscikums im Namurium und Westfalium Nordwestdeutschlands. In: Wrede, V. (ed.): Stratigraphie von Deutschland V - Das Oberkarbon (Pennsylvanium) in Deutschland. Cour. Forsch.-Inst. Senckenberg (Frankfurt a. M.) 254: 151203.Google Scholar
Dusar, M., Paproth, E., Streel, M. & Bless Martin, J.M., 2000. Palaeogeographic and palaeoenvironmental characteristics of major marine incursions in northwestern Europe during the Westphalian C (Bolsovian). Geologica Belgica 3: 331347.Google Scholar
Elbaz-Poulichet, F., Nagy, A. & Cserny, T., 1997. The Distribution of Redox Sensitive Elements (U, As, Sb, V and Mo) along a River-Wetland-Lake System (Balaton Region, Hungary). Aquatic Geochemistry 3: 267282.Google Scholar
Fisher, Q.J. & Wignall, P.B., 2001. Palaeoenvironmental controls on the uranium distribution in an Upper Carboniferous black shale (Gastrioceras listeri Marine Band) and associated strata; England. Chemical Geology 175: 605621.CrossRefGoogle Scholar
Gayer, R.A., Rose, M., Dehmer, J. & Shao, L.Y., 1999. Impact of sulphur and trace element geochemistry on the utilization of a marine-influenced coal; case study from the South Wales Variscan foreland basin. International Journal of Coal Geology 40: 151174.Google Scholar
Goodarzi, F. & Swaine, D.J., 1993. Chalcophile elements in Western Canadian coals. International Journal of Coal Geology 24: 281292.Google Scholar
Holdsworth, B.K. & Collinson, J.D., 1988. Millstone Grit cyclicity revisited. In: Besly, B.M. & Kelling, G. (eds): Sedimentation in a synorogenic basin complex; the Upper Carboniferous of Northwest Europe. Blackie and Son (London): 132152.Google Scholar
Hollywood, J.M. & Whorlow, C.V., 1993. Structural development and hydrocarbon occurrence of the Carboniferous in the UK southern North Sea Basin. In: Parker, J.R. (ed.): Petroleum geology of Northwest Europe; Proceedings of the 4th conference. Geological Society (London): 689696.Google Scholar
Hoogteijling, P.J., 1948. Radioactiviteit en bodemgesteldheid. Vrije Universiteit (Amsterdam): 93 pp.Google Scholar
Jedwab, J., 1966. Les degats radiatifs dans le charbon uranifere du Schaetzel. Geologische Rundschau 55: 445453.Google Scholar
Krull, P., 2005. Paläogeographischer Rahmen. In: Wrede, V. (ed.): Stratigraphie von Deutschland V - Das Oberkarbon (Pennsylvanium) in Deutschland. Cour. Forsch.-Inst. Senckenberg (Frankfurt a. M.) 254: 312.Google Scholar
Laznicka, P., 1985. The geological association of coal and metallic ores - a review. In: Wolf, K.H. (ed.): Handbook of strata-bound and stratiform ore deposits. Regional studies and specific deposits 13: 171.Google Scholar
Leeder, M.R., 1988. Recent developments in Carboniferous geology; a critical review with implications for the British Isles and N.W. Europe. Proceedings of the Geologists’ Association 99: 73100.Google Scholar
Leeder, M.R., Raiswell, R., Al Biatty, H., McMahon, A. & Hardman, M., 1990. Carboniferous stratigraphy, sedimentation and correlation of Well 48/ 3–3 in the southern North Sea basin; integrated use of palynology, natural gamma/ sonic logs and carbon/sulphur geochemistry. Journal of the Geological Society of London 147: 287300.Google Scholar
Lyons, T.W., Werne, J.P., Hollander, D.J. & Murray, R.W., 2003. Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela. Chemical Geology 195: 131157.Google Scholar
Martinsen, O.J., Collinson, J.D. & Holdsworth, B.K., 1995. Millstone Grit cyclicity revisited; II, Sequence stratigraphy and sedimentary responses to changes of relative sea-level. In: Plint, A.G. (ed.): Sedimentary facies analysis; a tribute to the research and teaching of Harold G. Reading. Special Publication of the International Association of Sedimentologists (Oxford) 22: 305327.Google Scholar
Meessen, J.P.M.T., 1985. Rapport betreffende het onderzoek naar microfossielen van een drietal trajecten van boring Ruurlo 1. Internal report 2085. Rijks Geologische Dienst, Haarlem.Google Scholar
Menning, M., Alekseev, A.S., Chuvashov, B.I., Davydov, V.I., Devuyst, F.X., Forke, H.C., Grunt, T.A., Hance, L., Heckel, P.H., Izokh, N.G., Jin, Y.G., Jones, P.J., Kotlyar, G.V., Kozur, H.W., Nemyrovska, T.I., Schneider, J.W., Wang, X.D., Weddige, K., Weyer, D. & Work, D.M., 2006. Global time scale and regional stratigraphie reference scales of central and west Europe, east Europe, Tethys, south China, and North America as used in the Devonian-Carboniferous-Permian Correlation Chart 2003 (DCP 2003). Palaeogeography, Palaeoclimatology, Palaeoecology 240: 318372.Google Scholar
Nekrasova, Z.A., 1957. K voprosu o genezise uranovogo orudeneniya v uglyakh. Voprosy Geol. Urana 6: 3754.Google Scholar
Paproth, E., 1989. Die paläogeographische Entwicklung Mittel-Europas im Karbon. Geologisches Jahrbuch Hessen 117: 5368.Google Scholar
Paproth, E., Dusar, M., Bless, M.J.M., Bouckaert, J., Delmer, A., Fairon-Demaret, M., Houlleberghs, F., Laloux, M., Pierart, P., Somers, Y., Streel, M., Thorez, J. & Tricot, J., 1983. Bio- and lithostratigraphic subdivisions of the Silesian in Belgium; a review. Annales de la Societe Geologique de Belgique 106: 241283.Google Scholar
Rabitz, A., 1966. Die marinen Horizonte des flözführenden Ruhrkarbons. Fortschr. Geol. Rheinld. u. Westf 13: 243296.Google Scholar
Raiswell, R. & Berner, R.A., 1987. Organic carbon losses during burial and thermal maturation of normal marine shales. Geology 15: 853856.Google Scholar
Ramsbottom, W.H.C., 1969. The Namurian of Britain. Compte Rendu Congres International de Stratigraphie et de Geologie du Carbonifere 1: 219232.Google Scholar
Ramsbottom, W.H.C., Ridd, M.F. & Read, W.A., 1979. Rates of transgression and regression in the Carboniferous of NW Europe; with discussion and reply. Journal of the Geological Society of London 136: 147154.CrossRefGoogle Scholar
Schultz, R.B., 2004. Geochemical relationships of late Paleozoic carbon-rich shales of the Midcontinent, USA; a compendium of results advocating changeable geochemical conditions.; Geochemistry of organic-rich shales; new perspectives. Chemical Geology 206: 347372.Google Scholar
Spears, D.A., 1964. The major element geochemistry of the Mansfield marine band in the Westphalian of Yorkshire. Geochimica et Cosmochimica Acta 28: 16791696.CrossRefGoogle Scholar
Spears, D.A., Rippon, J.H. & Cavender, P.F., 1999. Geological controls on the sulphur distribution in British Carboniferous coals; a review and reappraisal. International Journal of Coal Geology 40: 5981.Google Scholar
Spears, D.A. & Sezgin, H.I., 1985. Mineralogy and geochemistry of the Subcrenatum Marine Band and associated coal-bearing sediments, Langsett, South Yorkshire. Journal of Sedimentary Petrology 55: 570578.Google Scholar
Swaine, D.J., 1990. Trace elements in coal. Butterworth (London): 278 pp.Google Scholar
Taylor, S.R. & McLennan, S.M., 1985. The continental crust: its composition and evolution. Blackwell (Oxford): 312 pp.Google Scholar
Ten Haven, H.L., Baas, M., de Leeuw, J.W., Schenck, P.A. & Brinkhuis, H., 1987. Late Quaternary Mediterranean sapropels; II, Organic geochemistry and palynology of S (sub 1) sapropels and associated sediments. Chemical Geology 64: 149167.Google Scholar
Thiadens, A.A., 1963. The Palaeozoic of the Netherlands. KNGMG (Delft): 28 pp.Google Scholar
Van Amerom, H.W.J. & Glerum, J.J., 1984. Rapport betreffende de stratigra-fische interpretatie van diepboring Kemperkoul-1 op grond van de makroflora. Internal report 2003. Rijks Geologische Dienst, Haarlem.Google Scholar
Van Amerom, H.W.J. & Meessen, J.P.M.T., 1985. Rapport over mariene niveaus in diepboring Hengevelde-1. Internal report 2094. Rijks Geologische Dienst, Haarlem.Google Scholar
Van Amerom, H.W.J., Meessen, J.P.M.T. & Glerum, J.J., 1985. Rapport over mariene niveaus in diepboring Joppe-1. Internal report 2091. Rijks Geologische Dienst, Haarlem.Google Scholar
Wignall, P.B., 1994. Black shales. Oxford University Press (Oxford): 127 pp.Google Scholar
Ziegler, P.A., 1990. Geological Atlas of Western and Central Europe (2nd edition). Shell Internationale Petroleum Maatschappij B.V.; Geological Society Publishing House (Bath): 239 pp.Google Scholar