Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T03:25:37.514Z Has data issue: false hasContentIssue false

Fluvial deposits as a record for Late Quaternary neotectonic activity in the Rhine-Meuse delta, The Netherlands

Published online by Cambridge University Press:  01 April 2016

K.M. Cohen
Affiliation:
Dept. of Physical Geography, Utrecht University, Faculty of Geographical Sciences, Heidelberglaan 2, 3508 TC Utrecht, the Netherlands; e-mail: [email protected]
E. Stouthamer
Affiliation:
Dept. of Physical Geography, Utrecht University, Faculty of Geographical Sciences, Heidelberglaan 2, 3508 TC Utrecht, the Netherlands; e-mail: [email protected]
H.J.A. Berendsen
Affiliation:
Dept. of Physical Geography, Utrecht University, Faculty of Geographical Sciences, Heidelberglaan 2, 3508 TC Utrecht, the Netherlands; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Neotectonic movements have caused differential subsidence in the Lower Rhine Embayment during the Quaternary. The Late Weichselian and Holocene Rhine-Meuse fluvial archive in the central Netherlands was used to quantify neotectonic movements in a setting that was primarily controlled by sea-level rise and climate change. Evidence for neotectonic activity in the central Netherlands is reviewed. Sedimentary evidence shows that fluvial deposits of Late Weichselian and Holocene Rhine and Meuse (Maas) distributaries are vertically displaced along the northern shoulder of the Roer Valley Graben system. Elevation differences in the longitudinal profiles of Late Weichselian terrace deposits were used to quantify tectonic displacements. New results for the southeastern Rhine-Meuse delta (Maaskant area) show that displacements in the top of the Pleniglacial terrace along the Peel Boundary Fault are up to 1.4 m. The maximum displacement between the Peel Horst and the Roer Valley Graben is 2.3 m. This is equivalent to relative tectonic movement rates of 0.09-0.15 mm/yr, averaged over the last 15,000 years.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2002

References

Alexandre, P., 1994. Historical seismicity of the lower Rhine and Meuse valleys from 600 to 1525: a new critical review. Geologie en Mijnbouw 73: 431438.Google Scholar
Allen, J.R.L., 1965. A review of the origin and characteristics of recent alluvial sediments. Sedimentology 5: 89101.Google Scholar
Beets, D.J. & Van der Spek, J.F., 2000. The Holocene evolution of the barrier and the back-barrier basins of Belgium and the Netherlands as a function of late Weichselian morphology, relative sea-level rise and sediment supply. Geologie en Mijnbouw / Netherlands Journal of Geosciences 79 (1): 316.Google Scholar
Berendsen, H.J.A., 1982. De genese van het landschap in het zuiden van de provincie Utrecht. Ph.D. Thesis. Utrechtse Geografische Studies 25, Faculty of Geographical Sciences, Utrecht University (Utrecht): 255 pp.Google Scholar
Berendsen, H., Hoek, W. & Schorn, E., 1995. Late Weichselian and Holocene river channel changes of the rivers Rhine and Meuse in the Netherlands (Land van Maas en Waal). In: Frenzel, B., (ed.): European river activity and climate change during the Lateglacial and Holocene. ESF project European Paläoklimaforschung. Palaeoclimate Research 14: 151172.Google Scholar
Berendsen, H.J.A., 1998. Birds-Eye View of the Rhine-Meuse Delta. Journal of Coastal Research 14 (3): 740752.Google Scholar
Berendsen, H.J.A. & Stouthamer, E., 2000. Late Weichselian and Holocene palaeogeography of the Rhine-Meuse delta, The Netherlands. Palaeogeography, Palaeoclimatology, Palaeoecology 161:311335.Google Scholar
Berendsen, H.J.A. & Stouthamer, E., 2001. Palaeogeographical development of the Rhine-Meuse delta, The Netherlands. Van Gorcum (Assen): 250 pp.Google Scholar
Bijlsma, S., 1981. Fluvial sedimentation from the Fennoscandian area into the North-West European Basin during the Late Cenozoic. Geologie en Mijnbouw 60: 337345.Google Scholar
Bridgland, D.R. & D’Olier, B., 1995. The Pleistocene evolution of the Thames and Rhine drainage systems in the southern North Sea Basin. In: Preece, R.C. (ed.): Island Britain: a Quaternary perspective. Geological Society Special Publication No. 96: 2745.Google Scholar
Camelbeeck, T. & Meghraoui, M., 1998. Geological and geophysical evidence for large palaeo-earthquakes with surface faulting in the Roer Graben (northwest Europe). Geophysical Journal International 132 (2): 347362.Google Scholar
Cleveringa, J., 2000. Reconstruction and modeling of Holocene coastal evolution of the western Netherlands. Ph.D. Thesis. Geologica Ultraiectina - Mededelingen van de Faculteit Aardwetenschappen Universiteit Utrecht 200: 197 pp.Google Scholar
Dirkzwager, J.B., Van Wees, J.D., Cloetingh, S.A.P.L., Geluk, M.C., Dost, B. & Beekman, W.W.W., 2000. Geo-mechanical and rheological modelling of upper crustal faults and their near-surface expression in the Netherlands. Global and Planetary Change 27: 6788.Google Scholar
Friedrich, M., Kromer, B., Spurk, M., Hofmann, J. & Kaiser, K.F., 1999. Palaeo-environment and radiocarbon calibration as derived from Lateglacial/Early Holocene tree-ring chronologies. Quaternary International 61: 2739.Google Scholar
Geluk, M.C., Duin, E.J.Th., Dusar, M., Rijkers, R.H.B., Van den Berg, M.W. & Van Rooijen, P., 1994. Stratigraphy and tectonics of the Roer Valley Graben. Geologie en Mijnbouw 73: 129141.Google Scholar
Gibbard, P.L., 1995. The formation of the Strait of Dover. In: Preece, R.C. (ed.): Island Britain: a Quaternary perspective. Geological Society Special Publication No. 96: 1526.Google Scholar
Holbrook, J. & Schumm, S.A., 1999. Geomorphic and sedimentary response of rivers to tectonic deformation: a brief review and critique of a tool for recognizing subtle epeirogenic deformation in modern and ancient settings. Tectonophysics 305: 287306.Google Scholar
Houtgast, R.F. & Van Balen, R.T., 2000. Neotectonics of the Roer Valley Rift System, the Netherlands. Global and Planetary Change 27: 131146.CrossRefGoogle Scholar
Huisink, M., 1997. Lateglacial sedimentological and morphological changes in a lowland river in response to climate change: the Maas, southern Netherlands. Journal of Quaternary Science 12: 209223.Google Scholar
Huisink, M., 1999a. Lateglacial river sediment budgets in the Maas valley, the Netherlands. Earth Surface Processes and Landforms 24:93109.Google Scholar
Huisink, M., 1999b. Changing river styles in response to climate change - Examples from the Maas and Vecht during Weichselian Pleni- and Lateglacial. Ph.D. Thesis. Faculty of Earth Sciences, Vrije Universiteit (Amsterdam): 127 pp.Google Scholar
Jelgersma, S., 1979. Sea-level changes in the North Sea basin. In: Oele, E., Schüttenhelm, R.T.E. & Wiggers, A. (eds.): The Quaternary history of the North Sea. Acta Univ. Ups. Symp. Univ. Ups. Annum Quingentesimum Celebrantis (Uppsala) 2: 233248.Google Scholar
Kasse, C. 1995. Younger Dryas cooling and fluvial response (Maas river, the Netherlands) (ext. abstr.) Geologie en Mijnbouw 74: 251256.Google Scholar
Kooi, H., Cloetingh, S. & Remmelts, G., 1989. Intraplate stresses and the stratigraphie evolution of the North Sea Central Graben. Geologie en Mijnbouw 68: 4972.Google Scholar
Klostermann, J., 1992. Das Quartär der Niederrheinische Bucht. Geologisches Landesamt Nordrhein-Westfalen (Krefeld): 200 pp.Google Scholar
Maddy, D. & Bridgland, D.R., 2000. Accelerated uplift resulting from Anglian glacioisostatic rebound in the Middle Thames Valley, UK?: evidence from the river terrace record. Quaternary Science Reviews 19: 15811588.Google Scholar
Makaske, B., 1998. Anastomosing Rivers, Forms, processes and sediments. Ph.D.Thesis. Nederlandse Geografische Studies 249. The Royal Dutch Geographical Society, Faculty of Geographical Sciences, Utrecht University (Utrecht): 298 pp.Google Scholar
Mangerud, J., Andersen, S.T., Berglund, B.E. & Donner, J.J., 1974. Quaternary stratigraphy of Norden, a proposal for terminology and classification. Boreas 3: 109127.Google Scholar
Posamentier, H.W. Allen, H.W., James, D.P. & Tesson, M., 1992. Forced regressions in a sequence stratigraphie framework: Concepts, examples, and sequence stratigraphie significance. American Association of Petroleum Geologist Bulletin 76: 16871709.Google Scholar
Pons, L.J., 1957. De geologie, de bodemvorming en de waterstaatkundige ontwikkeling van het Land van Maas en Waal en een gedeelte van het Rijk van Nijmegen. ‘s-Gravenhage: Verslagen van Landbouwkundige onderzoekingen 63.11. Dissertatie Wageningen. Bodemkundige studies 3: 156 pp.Google Scholar
Quitzow, H.W., 1974. Das Rheintal und seine Entstehung. Bestandsaufnahme und Versuch einer Synthese. In: Macar, P. (ed.): L’Évolution Quaternaire des Bassins Fluviaux de la Mer du Nord Meridionale - Liège: 53104.Google Scholar
Stewart, I.S., Sauber, J. & Rose, J., 2000. Glacio-seismotectonics: ice sheets, crustal deformation and seismicity. Quaternary Science Reviews 19: 13671389.Google Scholar
Stouthamer, E. & Berendsen, H.J.A., 2000. Factors controlling the Holocene avulsion history of the Rhine-Meuse delta (The Netherlands). Journal of Sedimentary Research Section A 70 (5): 10511064.Google Scholar
Talling, P.J., 1998. How and where do incised valleys form if sea level remains above the shelf edge? Geology 26: 8790.2.3.CO;2>CrossRefGoogle Scholar
Tebbens, L.A., 1999. Late Quaternary evolution of the Meuse fluvial system and its sediment composition. Ph.D. Thesis. Wageningen Agricultural University, the Netherlands: 155 pp.Google Scholar
Tebbens, L.A., Veldkamp, A., Westerhoff, W. & Kroonenberg, S.B., 1999. Fluvial incision and channel downcutting as a response to Late-glacial and Early Holocene climate change: the lower reach of the River Meuse (Maas), the Netherlands. Journal of Quater nary Science 14 (1): 5975.Google Scholar
Tebbens, L.A., Veldkamp, A., Westerhoff, W. & Kroonenberg, S.B., 2000. Reply: Fluvial incision and channel downcutting as a response to Late-glacial and Early Holocene climate change: the lower reach of the River Meuse (Maas), the Netherlands. Correspondence, Journal of Quaternary Science 15: 95100.Google Scholar
Thorson, R.M., 2000. Glacial tectonics: a deeper perspective. Quaternary Science Reviews 19: 13911398.Google Scholar
Törnqvist, T.E., 1993a. Fluvial sedimentary geology and chronology of the Holocene Rhine-Meuse delta, The Netherlands. Ph.D. Thesis. Nederlandse Geografische Studies 166. Royal Dutch Geographical Society. Faculty of Geographical Sciences, Utrecht University (Utrecht): 176 pp.Google Scholar
Törnqvist, T.E., 1993b. Holocene alternation of meandering and anastomosing fluvial systems in the Rhine-Meuse delta (central Netherlands) controlled by sea-level rise and subsoil erodibility. Journal of Sedimentary Petrology 63 (4): 683693.Google Scholar
Törnqvist, T.E., 1994. Middle and Late Holocene avulsion history of the river Rhine (Rhine-Meuse delta, Netherlands). Geology 22:711714.Google Scholar
Törnqvist, T.E., 1995. Discussion: Alluvial architecture of the Quaternary Rhine-Meuse river system in the Netherlands. Geologie en Mijnbouw 74: 183186.Google Scholar
Törnqvist, T.E., 1998. Longitudinal profile evolution of the Rhine-Meuse system during the last deglaciation: interplay of climate change and glacio-eustasy? Terra Nova 10: 1115.Google Scholar
Törnqvist, T.E., Weerts, H.J.T. & Berendsen, H.J.A., 1994. Definition of two new members in the upper Kreftenheye and Twente formations (Quaternary, the Netherlands): a final solution to persistent confusion? Geologie en Mijnbouw 72: 251264.Google Scholar
Törnqvist, T.E., Van Ree, M.H.M., Van ‘t Veer, R. & Van Geel, B., 1998. Improving methodology for high-resolution reconstruction of sea-level rise and neotectonics by palaeoecological analysis and AMS 14C dating of basal peats. Quaternary Research 49: 7285.Google Scholar
Törnqvist, T.E., Wallinga, J., Murray, A.S., De Wolf, H., Cleveringa, P. & De Gans, W. 2000. Response of the Rhine-Meuse system (West-central Netherlands) to the last Quaternary glacio-eustatic cycles: a first assessment. Global and Planetary Change 27: 89111.CrossRefGoogle Scholar
Van de Meene, E.A. & Zagwijn, W.H., 1978. Die Rheinläufe im deutsch-niederländischen Grenzgebiet seit der Saale-Kaltzeit. Überblick neuer geologischer und pollenanalytischer Untersuchungen. Fortschr. Geol. Rheinld. u.West. 28: 345359.Google Scholar
Van den Berg, M.W., 1994. Neotectonics of the Roer Valley rift system. Style and rate of crustal deformation inferred from syn-tectonic sedimentation. Geologie en Mijnbouw 73: 143156.Google Scholar
Van den Berg, M.W., 1996. Fluvial sequences of the Maas: a 10 Ma record of neotectonics and climate change at various time-scales. Ph.D. Thesis. University Wageningen, the Netherlands: 181 pp.Google Scholar
Van den Berg, M.W., Groenewoud, W., Lorenz, G.K., Brus, D.J. & Kroonenberg, S.B., 1994. Patterns and velocities of recent crustal movements in the Dutch part of the Roer Valley rift system. Geologie en Mijnbouw 73: 157168.Google Scholar
Van den Broek, J.M.M. & Maarleveld, G.C., 1963. The Late-Pleistocene terrace deposits of the Meuse. Mededelingen van de Geologische Stichting Nieuwe Serie 16: 1324.Google Scholar
Van der Valk, L., 1992. Mid- and Late-Holocene Coastal Evolution in the Beach-Barrier Area of the Western Netherlands. Ph.D. Thesis. Vrije Universiteit Amsterdam. Febodruk (Enschede): 235 pp.Google Scholar
Van Dijk, G.J., Berendsen, H.J.A. & Roeleveld, W., 1991. Holocene water level development in The Netherlands’ river area; implications for sea-level reconstruction. Geologie en Mijnbouw 70: 311326.Google Scholar
Vandenberghe, J., 1995. Timescales, climate and river development. Quaternary Science Reviews 14: 631638.CrossRefGoogle Scholar
Vanneste, K., Meghraoui, M. & Camelbeeck, T., 1999. Late Quaternary earthquake related soft-sediment deformation along the Belgian portion of the Feldbiss Fault, Lower Rhine Graben system. Tectonophysics 309: 5779.Google Scholar
Veldkamp, A. & Van den Berg, M.W., 1993. Three-dimensional modelling of Quaternary fluvial dynamics in a climo-tectonic dependent system. A case study of the Maas record (Maastricht, The Netherlands). Global and Planetary Change 8: 203218.Google Scholar
Veldkamp, A. & Tebbens, L.A., 2001. Registration of abrupt climate changes within fluvial systems: insights from numerical modelling experiments. Global and Planetary Change 28: 129144.Google Scholar
Verbraeck, A., 1984. Toelichtingen bij de Geologische kaart van Nederland, schaal 1:50.000, Blad 39, Tiel West, Tiel Oost. Rijks Geologische Dienst (Haarlem): 325 pp.Google Scholar
Verbraeck, A., 1990. De Rijn aan het einde van de laatste ijstijd: de vorming van de jongste afzettingen van de Formatie van Kreftenheye. Koninklijk Nederlands Aardrijkskundig Genootschap, Geografisch Tijdschrift 23: 328339.Google Scholar
Weerts, H.J.T. & Berendsen, H.J.A., 1995. Late Weichselian and Holocene fluvial palaeogeography of the southern Rhine-Meuse delta (the Netherlands). Geologie en Mijnbouw 74: 199212.Google Scholar
Zagwijn, W.H., 1974. The Palaeogeographic Evolution of The Netherlands during the Quaternary. Geologie en Mijnbouw 5: 369385.Google Scholar
Zagwijn, W.H., 1986. Nederland in het Holoceen. Staatsdrukkerij (‘s-Gravenhage): 46 pp.Google Scholar
Zagwijn, W.H., 1989. The Netherlands during the Tertiary and the Quaternary: A case history of Coastal Lowland evolution. Geologie en Mijnbouw 68: 107120.Google Scholar
Ziegler, P.A., 1994. Cenozoic rift system of western and central Europe: an overview. Geologie en Mijnbouw 73: 99127.Google Scholar