Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T19:35:32.409Z Has data issue: false hasContentIssue false

Drift sands, lakes, and soils: the multiphase Holocene history of the Laarder Wasmeren area near Hilversum, the Netherlands

Published online by Cambridge University Press:  25 March 2014

J. Sevink*
Affiliation:
Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, the Netherlands
E.A. Koster
Affiliation:
Department of Physical Geography, Faculty of Geosciences, Utrecht University, the Netherlands
B. van Geel
Affiliation:
Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, the Netherlands
J. Wallinga
Affiliation:
Soil Geography and Landscape group, Wageningen University / Netherlands Centre for Luminescence dating (NCL), Delft University of Technology, the Netherlands

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A unique complex of multiphased Holocene drift sands and paleosols, with at least two lacustrine phases, was discovered during a major sanitation project in the Laarder Wasmeren area near Hilversum, the Netherlands. The complex could be studied in detail, highly facilitated by the excellent and large-scale exposure of the various deposits and soils. OSL dating was used to establish ages of the phases, where possible differentiating between time of deposition and time of burial by taking into account the potential effects of bioturbation. Pollen analysis served to reconstruct the vegetation during the various phases.

A first minor phase of aeolian activity already started before approx. 5,000 BC, followed around 4,000 BC by a second phase and a rather massive third phase around 3,000 BC. After a long phase of soil formation, the latest, massive drift sand phase started around the 14th to 15th century. It clearly represents the classic drift sand phase that started in the Late Middle Ages in the Netherlands. Sand drifting followed on soil forming phases during which the vegetation became increasingly dominated by ericaceous plants and culminated in heathlands. The first three aeolian phases and associated heathlands are much older than generally assumed for heathland and drift sand to occur in the Netherlands. Moreover, podzolisation was found to have started very early, true podzols already occurring before 4,000 BC.

Around 3,000 BC groundwater in the area reached a maximum altitude of about 230 cm +NAP, resulting in local open water in the area. This rise is probably linked to the development of the Dutch coastal area, where at that time peat accumulated and drainage was poor, inducing a rise of the groundwater level in ‘het Gooi’. This groundwater level fell later on, to never reach this altitude again. The Groot Wasmeer was formed by local stagnation on a slowly permeable podzol and already reached a level of 320-325 cm +NAP by 400 BC, which more or less equals its 20th century level.

The results demonstrate that earlier concepts on the occurrence and age of aeolian phases, podzols and heathland vegetations in the Netherlands are far too schematic, and that early, pre-agricultural cultures may already have had an impact on the stability of fragile cover sand landscapes, e.g. through burning. Results are in line with those from several contemporary studies on early prehistoric cultures and their impact in river dune areas in the Central and Eastern Netherlands.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2013

References

Ballarini, M., Wallinga, J., Murray, A.S., Van Heteren, S., Oost, A.P., Bos, A.J.J. & Van Eijk, C.W.E., 2003. Optical dating of young coastal dunes on a decadal time scale. Quaternary Science Reviews 22: 10111017.Google Scholar
Ballarini, M., Wallinga, J., Wintle, A.G., & Bos, A.J.J., 2007. A modified SAR protocol for optical dating of individual grains from young quartz samples. Radiation Measurements 42: 360369.Google Scholar
Bateman, M.D. & Godby, S.P., 2004. Late-Holocene Inland Dune Activity in the UK: A case study from Breckland East Anglia. The Holocene, 14: 579588.CrossRefGoogle Scholar
Beug, H., 2004. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Verlag Dr. Friedrich Pfeil, München, 542 pp.Google Scholar
Bieleman, J., 1992. Geschiedenis van de landbouw in Nederland 1500-1950. Boom, Meppel/Amsterdam, 423 pp.Google Scholar
Blaauw, M., Van Geel, B., & Van der Plicht, J., 2004. Solar forcing of climatic change during the mid-Holocene: indications from raised bogs in the Netherlands. The Holocene 14: 3544.Google Scholar
Bos, I.J., 2010. Distal delta plain successions. Architecture and lithofacies of lake fills and organics in the Holocene Rhine-Meuse delta, the Netherlands. Ph.D. thesis Utrecht University, 221 pp.Google Scholar
Bos, I.J. Feiken, H., Bunnik, F. & Schokker, J., 2009. Influence of organics and clastic lake fills on distributary channel processes in the distal Rhine-Meuse delta (the Netherlands). Palaeogeography, Palaeoclimatology, Palaeoecology 284: 355374.Google Scholar
Buurman, P., 1985. Carbon/sesquioxide ratios in organic complexes and the transition Albic-Spodic Horizon. Journal of Soil Science 36: 255260 Google Scholar
Cammeraat, L.H., Sevink, J. & Vlaming, M., 2008. Doorlaatbaarheidbepalingen podzol B Laarder Wasmeren, IBED Rapport in opdracht van Waternet (Amsterdam), 4 pp.Google Scholar
Casparie, W.A. & Groenman-Van Waateringe, W., 1980. Palynological Analysis of Dutch Barrows. Palaeohistoria 22: 765.Google Scholar
Castel, I.I.Y., 1991. Late Holocene aeolian drift sands in Drenthe (the Netherlands). Ph.D. thesis University of Utrecht, Netherlands Geographical Studies 133, 156 pp.Google Scholar
Castel, I.I.Y., Koster, E.A. & Slotboom, R.T., 1989. Morphogenetic aspects and age of Late Holocene aeolian drift sands in Northwest Europe. Zeitschrift für Geomorphologie 33: 126.Google Scholar
Cohen, K.M., 2005. 3D Geostatistical interpolation and geological interpretation of paleo-groundwater rise in the Holocene coastal prism in the Netherlands. In: Giosan, L. & Bhattacharya, J.P. (eds): River Deltas – Concepts, models, and examples. SEPM Special Publication 83: 341364.Google Scholar
Colaris, W., 1998. Natuur van het Gooi – Kansen voor duurzaam behoud. Ph.D. thesis University of Amsterdam: 420 pp.Google Scholar
Cunningham, A.C., Bakker, M.A.J., Van Heteren, S., Van der Valk, B., Van der Spek, A.J.F., Schaart, D.R. & Wallinga, J., 2011. Extracting storm-surge data from coastal dunes for improved assessment of flood risk. Geology 39, 11: 10631066.Google Scholar
Cunningham, A.C. & Wallinga, J., 2010. Selection of integration time-intervals for quartz OSL decay curves, Quaternary Geochronology 5: 657666.CrossRefGoogle Scholar
Cunningham, A.C., Wallinga, J. & Minderhoud, P.S.J., 2011. Expectations of scatter in equivalent-dose distributions when using multi-grain aliquots for OSL dating. Geochronometria 38: 424431.Google Scholar
Davis, B.A.S., Brewer, S., Stevenson, A.C. & Guiot, J., 2003. The temperature of Europe during the Holocene reconstructed from pollen data. Quaternary Science Reviews 22: 17011716.Google Scholar
De Bakker, H. & Schelling, J., 1966. Systeem van bodemclassificatie voor Nederland: de hogere niveaus. Pudoc (Wageningen), 217 pp.Google Scholar
De Mulder, E.F.J., Geluk, M.C., Ritsema, I.L., Westerhoff, W.E. & Wong, T.E. (eds). 2003. De ondergrond van Nederland (Geologie van Nederland 7). Wolters-Noordhoff (Groningen/Houten), 379 pp.Google Scholar
Derese, C., Vandenberghe, D., Eggermont, N., Bastiaens, J., Annaert, R. & Van Den Haute, P., 2010. A medieval settlement caught in the sand: optical dating of sand-drifting at Pulle (N Belgium). Quaternary Geochronology 5: 336341.Google Scholar
De Smidt, J.T., 1975. Nederlandse heidevegetaties. Thesis Universiteit Utrecht, 98 pp.Google Scholar
Dijkmans, J.W.A., Wintle, A.G. & Mejdahl, V., 1988. Some thermoluminescence properties and dating of aeolian sands from the Netherlands. Quaternary Science Reviews 7: 349355.Google Scholar
Dijkmans, J.W.A. & Wintle, A.G., 1991. Methodological problems in thermoluminescence dating of Weichselian cover sand and late Holocene drift sand from the Lutterzand area, E Netherlands. Geologie en Mijnbouw 70: 2133.Google Scholar
Dijkmans, J.W.A., Van Mourik, J.M. & Wintle, A.G., 1992. Thermoluminescence dating of aeolian sands from polycyclic soil profiles in the Southern Netherlands. Quarternary Science Reviews 11: 8592.Google Scholar
Dimbleby, G.W., 1985. The palynology of archaeological sites. Academic Press, (London), 176 pp.Google Scholar
Dorland, E., Hart, M. A. C., Vermeer, M. L. & Bobbink, R., 2005. Assessing the success of wet heath restoration by combined sod cutting and liming. Applied Vegetation Science 8(2): 209218.Google Scholar
Duller, G.A.T., 2003. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiation Measurements 37: 161165.Google Scholar
Fanta, J. & Siepel, H., 2010. Inland Drift Sand Landscapes. KNNV Publishing, Zeist, the Netherlands, 384 pp.CrossRefGoogle Scholar
Fxgri, K. & Iversen, J., 1989. In: Fægri, K., Kaland, P.E. & Krzywinski, K. (eds): Textbook of Pollen Analysis, fourth ed. Wiley and Sons, New York, 328 pp.Google Scholar
FAO, 1998. World Reference Base for Soil Resources. World Soil Resources Reports 84. Rome. International Society of Soil Science.Google Scholar
Feijen, J.M., 2003. Oak, king of villein?: is the common oak (Quercus robur and Q. petraea) an anachronism in the Dutch forests?: a literature study. M.Sc. thesis WUR, Wageningen, 99 p.Google Scholar
Folk, R.L. & Ward, W.C., 1957. Brazos river bar: a study in the significance of grain-size parameters. Journal of Sedimentary Petrology 27: 326.Google Scholar
Galbraith, R.F., 1990. The radial plot – graphical assessment of spread in ages. Nuclear Tracks and Radiation Measurements 17: 207214.Google Scholar
Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H. & Olley, J.M., 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: Part I, experimental design and statistical models. Archaeometry 41: 339364.Google Scholar
Groeneveld, J., 2001. Hoofdwegen in en rond Eemnes door de eeuwen heen. Historische Kring Eemnes, jaargang 23, nr. 3: 141155.Google Scholar
Groenman-Van Waateringe, W., 2010. Man and vegetation on the Veluwe in six time slices. In: Fanta, J. & Siepel, H. (eds): Inland Drift Sand Landscapes. KNNV Publishing (Zeist) the Netherlands: 4964.Google Scholar
Heidinga, H.A., 1984. Indications of severe drought during the 10th century AD from an inland dune area in the Central Netherlands. Geologie en Mijnbouw 63: 241248.Google Scholar
Heidinga, H.A., 2010. The birth of a desert; the Kootwijkerzand. In: Fanta, J. & Siepel, H. (eds): Inland drift sand landscapes. KNNV Publishing (Zeist) the Netherlands: 6581.Google Scholar
Hilgers, A., Murray, A.S., Schlaak, N. & Radtke, U., 2001. Comparison of quartz OSL protocols using Lateglacial and Holocene dune sands from Brandenburg, Germany. Quaternary Science Reviews 20: 731736.Google Scholar
Hilgers, A., 2007. The chronology of Late Glacial and Holocene dune development in the northern Central European Lowland reconstructed by optically stimulated luminescence (OSL) dating. Thesis Universität zu Köln: 353 pp.Google Scholar
Jungerius, P.D. & Riksen, M.J.P.M., 2010. Contribution of laser altimetry images to the geomorphology of the Late Holocene inland drift sands of the European Sand Belt. Baltica 23 (1): 5970.Google Scholar
Kasse, C., 2002. Sandy aeolian deposits and environments and their relation to climate during the Last Glacial Maximum and Lateglacial in northwest and central Europe. Progress in Physical Geography 26: 507532.Google Scholar
Koopman, S., Pfeifer, A.E. & Ruegg, G.H.J., 2010. Goois Geologisch Informatie-Systeem. www.ivngooi.nl/ggis/inleid.htm.Google Scholar
Koopman, S. & Pfeifer, A.E., 2012. De paleografische ontwikkeling van Gooi en Eemland sinds het Saalien. Grondboor en Hamer 3: 267275.Google Scholar
Koster, E.A., 1978. De stuifzanden van de Veluwe: een fysisch geografische studie (Eolian drift sands of the Veluwe, Central Netherlands). Publicaties van het Fysisch Geografisch en Bodemkundig Laboratorium, Thesis Universiteit van Amsterdam, 195 pp.Google Scholar
Koster, E.A., 1982. Terminology and Lithostratigraphic Subdivision of (Surficial) Sandy Eolian Deposits in the Netherlands. An Evaluation. Geologie en Mijnbouw 61: 121129.Google Scholar
Koster, E.A., 1988. Ancient and modern cold-climate aeolian sand deposition: A review. Journal of Quaternary Science 3: 6983.Google Scholar
Koster, E.A., 2005a. Recent advances in luminescence dating of Late Pleistocene (cold-climate) aeolian sand and loess deposits in Western Europe. Permafrost and Periglacial Processes 16: 131143.Google Scholar
Koster, E.A., 2005b. Aeolian environments. In: Koster, E.A. (ed.): The Physical Geography of Western Europe. Oxford Regional Environments. Oxford University Press: 139160.Google Scholar
Koster, E.A., 2009. The history of Late Holocene drift sands in the Netherlands: origin and reactivation. In: Dulias, R., Pelka-Gosalciniak, J., & Rahmonova, O. (eds): Ekosystemy Piaszczyste i Czlowiek. Prace Wydzialu Nauk o Ziemi Uniwersytetu Sallaskiego nr. 58, Sosnowiec: 111134.Google Scholar
Koster, E.A., 2010. Origin and development of Late Holocene drift sands: geomorphology and sediment attributes. In: Fanta, J. & Siepel, H. (eds): Inland drift sand landscapes. KNNV Publishing (Zeist): 2548.Google Scholar
Koster, E.A., 2012. Sedimentologie van stuifzand. Grondboor en Hamer 65: 123130.Google Scholar
Koster, E.A., Castel, I.I.Y. & Nap, R.L., 1993. Genesis and sedimentary structures of late Holocene aeolian drift sands in northwest Europe. In: Pye, K. (ed.): The dynamics and environmental context of aeolian sedimentary systems. Geological Society Special Publication (London) 72: 247267.Google Scholar
Louwe Kooijmans, L. P., 1995. Prehistory or paradise? Prehistory as a reference for modern nature development, the Dutch case – Mededelingen Rijks Geologische Dienst 52: 415424.Google Scholar
Louwe Kooijmans, L.P., Van Den Broeke, P.W., Fokkens, H. & Van Gijn, A.L. (eds), 2005. The Prehistory of the Netherlands. Amsterdam: Amsterdam University Press, 472 pp.Google Scholar
Louwe Kooijmans, L.P., 2012. Holland op z'n wildst? De Vera-hypothese getoetst aan de prehistorie. De levende Natuur, 113 (2): 6266.Google Scholar
Lundström, U.S., Van Breemen, N. & Bain, D., 2000. The podzolization process. A review. Geoderma 94: 91107.Google Scholar
Madsen, A.T., Murray, A.S. & Andersen, T.J., 2007. Optical dating of dune ridges on R0m0, a barrier island in the Wadden Sea, Denmark. Journal of Coastal Research 23: 12591269.Google Scholar
Mook, W.G. & Van der Plicht, J., 1999. Reporting 14C activities and concentrations. Radiocarbon 41: 227239.Google Scholar
Moore, P.D., Webb, J.A. & Collinson, M.E., 1991. Pollen Analysis. Blackwell Science (Malden) MA, 217 pp.Google Scholar
Murray, A.S. & Clemmensen, L.B., 2001. Luminescence dating of Holocene aeolian sand movement, Thy, Denmark. Quaternary Science Reviews (Quaternary Geochronology) 20: 751754.Google Scholar
Murray, A.S. & Wintle, A.G., 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32: 5773.Google Scholar
Prescott, J.R. & Hutton, J.T., 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23: 497500.Google Scholar
Pye, K. & Tsoar, H., 1990. Aeolian sand and sand dunes. Unwin Hyman (London), 396 pp.Google Scholar
Radtke, U. (ed.), 1998. Lumineszenzdatierung äolischer Sedimente. Beiträge zur Genese und Altersstellung jungquartärer Dünen und Lösse in Deutschland. Kölner Geografische Arbeiten H 70 (Köln), 124 pp.Google Scholar
Reineck, H.E. & Singh, I.B., 1980. Depositional sedimentary environments, Springer (Berlin), 549 pp.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., Van der Plicht, J. & Weyhenmeyer, C.E., 2009. IntCal09 and Marine09 Radiocarbon Age Calibration Curves, 0-50,000 Years cal BP, Radiocarbon 51: 11111150.Google Scholar
Riksen, M., Ketner-Oostra, R., Van Turnhout, C., Nijssen, M., Goossen, D., Jungerius, P.D. & Spaan, W., 2006. Will we lose the last active inland drift sands of Western Europe? The origin and development of the inland drift-sand ecotope in the Netherlands. Landscape Ecology 21: 431447.Google Scholar
Ruegg, G.H.J., 1983. Periglacial eolian evenly laminated sandy deposits in the Late Pleistocene of NW Europe, a facies unrecorded in modern sedimentological handbooks. In: Brookfield, M.E. & Ahlbrandt, T.S. (eds.): Eolian sediments and processes (Developments in Sedimentology 38). Elsevier (Amsterdam): 455482.Google Scholar
Ruegg, G.H.J., 1995. Kwartaire wordingsgeschiedenis van, en ontsluitingen in het Gooi. Grondboor en Hamer 49: 8289.Google Scholar
Schilder, M., Wallinga, J. & Van Mourik, J., 2006. OSL and radiocarbon dating of Late-Holocene drift-sand deposits in the southern Netherlands. In: Hoek, W.H. & Wallinga, J. (eds): NCL symposium series 4: 89.Google Scholar
Schot, P.P., 1989. Grondwatersystemen en grondwaterkwaliteit in het Gooi en randgebieden. Rapport Interfacultaire vakgroep Milieu, Universiteit Utrecht, 44 pp.Google Scholar
Schot, P.P. & Engelen, G.B., 1989. Analyse van water systemen in Het Goois-Utrechts stuwwallengebied, de Vechtstreek en de Eem vallei: Identificatie van knelpunten. In: Van Liere, L., Roijackers, R.M.M. & Verstraelen, P.J.T. (eds): CHO-TNO Rapporten en Notas nr. 22: 103117.Google Scholar
Schwan, J., 1986. The origin of horizontal alternating bedding in Weichselian aeolian sands in Northwestern Europe. Sedimentary Geology 49: 73108.Google Scholar
Schwan, J., 1988. The structure and genesis of Weichselian to Early Holocene aeolian sand sheets in Western Europe. Sedimentary Geology 55: 197232.Google Scholar
Sevink, J., 2007. Aardkundig Excursiepunt 13 Het Gooi. Grondboor & Hamer 61: 3035.Google Scholar
Sevink, J., 2010. Precisiewerk bij bodemsanering. aandacht voor venherstel en aardkundige waarden bij sanering Laarder Wasmeren. Vakblad Natuur Bos Landschap 9: 2629.Google Scholar
Sevink, J., Hulshof, O.K., Mucher, H.J. & Kroonenberg, S.B., 1970. Age and development of some fossil podzols in the Dinkel valley (E-Netherlands). In: From field to laboratory. Publ. 16, Fys. Geogr. en Bodemk. Lab. UvA: 133148.Google Scholar
Sevink, J., Vlaming, M.C., Van den Berg, W.J., Khodabux, E.R., Landsmeer, D. & Stoeten, G.J., 2008. De sanering van het Laarder Wasmerengebied. Bodem 5: 811.Google Scholar
Sevink, J. & De Waal, R., 2010. Soil and humus development in drift sands. In: Fanta, J. & Siepel, H. (eds): Inland Drift Sand Landscapes. KNNV Publishing (Zeist) the Netherlands: 107138.Google Scholar
Sevink, J., Siebelink, B., Strijbis, P. & De Haan, F., 2012. Nieuwe schoonheid: De sanering van de Laarder Wasmeren. Waterschap Amstel, Gooi en Vecht/Provincie Noord-Holland / GNR, 44 p.Google Scholar
Sparrius, L.B., 2011. Inland dunes in the Netherlands: soil, vegetation, nitrogen deposition and invasive species. Ph.D. thesis UvA Universiteit van Amsterdam, 165 pp.Google Scholar
Spek, T., 2004. Het Drentse esdorpenlandschap. Een historisch-geografische studie. (Village and open field landscapes of the Dutch province of Drenthe. A historical-geographical study). Thesis University of Wageningen, Stichting Matrijs (Utrecht), 1100 pp.Google Scholar
Strickertsson, K. & Murray, A.S., 1999, Optically stimulated luminescence dates for Late Pleistocene and Holocene sediments from Nørre Lyngby, Northern Jutland, Denmark. Quaternary Science Reviews (Quaternary Geochronology) 18: 169178.Google Scholar
Tolksdorf, J.F. & Kaiser, K., 2012. Holocene Aeolian Dynamics in the European Sand-Belt as Indicated by Geochronological Data. Boreas 41: 408421.Google Scholar
Van Beek, R., 2009. Reliëf in tijd en ruimte. Interdisciplinair onderzoek naar bewoning en landschap van Oost-Nederland tussen vroege prehistorie en middeleeuwen. Ph.D. thesis. Wageningen University, 641 pp.Google Scholar
Van Geel, B., Bohncke, S.J.P. & Dee, H., 1981. A palaeoecological study of an upper Lateglacial and Holocene sequence from ‘de Borchert’, the Netherlands. Review of Palaeobotany and Palynology 31: 367448.Google Scholar
Van Geel, B. & Bos, I., 2007. Paleo-ecologisch onderzoek naar beginnende veenvorming bij Abcoude. In: Beenakker, J.J.M., Horsten, F.J., Kraker, A.M.J. de & Renes, H. (ed.): Landschap in ruimte en tijd, Aksant.Google Scholar
Van Leerdam, A., Ouboter, M. & Beemster, J., 2010. Water, de stromende verbinding tussen Eeem en Vecht, verleden en heden. Publ. Vrienden van't Gooi / Stichting Tussen Eem en Vecht, Bussum/Naarden, the Netherlands.Google Scholar
Van der Meijden, F., 1996. Heukels' Flora van Nederland. Wolters-Noordhoff, 676 pp.Google Scholar
Van Mourik, J.M., 2003. Life cycle of pollen grains in mormoder humus forms of young acid forest soils: a micromorphological approach. Catena 54: 651663.Google Scholar
Van Mourik, J.M., Wartenberg, P.E., Mook, W.E. & Streurman, H.J., 1988. Absolute datering van humeuze horizonten in paleosolen. Netherlands Geographical Studies 74: 4357.Google Scholar
Van Mourik, J.M., Wartenbergh, P.E., Mook, W.G. & Streurman, H.J., 1995. Radiocarbon dating of palaeosols in aeolian sands. Mededelingen Rijks Geologische Dienst 52: 425440.Google Scholar
Van Mourik, J.M., Nierop, K.G.J. & Vandenberghe, D.A.G., 2010. Radiocarbon and optically stimulated luminescence dating based chronology of a polycyclic driftsand sequence at Weerterbergen (SE Netherlands). Catena 80: 170181.CrossRefGoogle Scholar
Van Mourik, J.M., Slotboom, R.T. & Wallinga, J., 2011. Chronology of plaggic deposits; palynology, radiocarbon and optically stimulated luminescence dating of the Posteles (NE-Netherlands). Catena 84: 5460.Google Scholar
Van Reeuwijk, L.P., 2002. Procedures for Soil Analysis, 6th ed., Technical Paper 9. ISRIC (Wageningen), 120 pp.Google Scholar
Velstra, J., Van der Maarel, A.M., Heimovaara, T.J., Keizer, H. & Taat, J., 2004. Grondwateronderzoek stortplaats Anna's Hoeve en Laarder Wasmeren Complex. Royal Haskoning.Google Scholar
Vera, F., 1997. Metaforen voor de Wildernis – eik, hazelaar, rund, paard. Proefschrift, LU Wageningen/Ede, 426 pp.Google Scholar
Vos, P.C., Bazelmans, J., Weerts, H.J.T. & Van der Meulen, M.J., 2011. Atlas van Nederland in het Holoceen. Bert Bakker (Amsterdam), 94 pp.Google Scholar
Wallinga, J., Davids, F. & Dijkmans, J.W.A., 2007. Luminescence dating of Netherlands' sediments. Netherlands Journal of Geosciences 86: 179196.Google Scholar
Wallinga, J. & Bos, I.J., 2010. Optical dating of clastic lake-fill sediments – a feasibility study in the Holocene Rhine delta (western Netherlands). Quaternary Geochronology 5: 602610.Google Scholar
Waterbolk, H.T., 1964. Podsolierungserscheinungen bei Grabhuegeln. Palaeo-historia, 10: 87102.Google Scholar
Weerts, H., Cleveringa, P. & Gouw, M., 2002. De Vecht/Angstel, een riviersysteem in het veen. Grondboor en Hamer 2002 nr. 3/4: 6671.Google Scholar
Whitehouse, N. & Smith, D., 2010. How fragmented was the British Holocene wildwood? Perspectives on the ‘Vera’ grazing debate from the fossil beetle record. Quaternary Science Reviews 29: 539553.Google Scholar
Willemse, N.W. & Groenewoudt, B.J., 2012 Resilience of Meta-Stable Landscapes? The Non-Linear Response of Late Glacial Aeolian Landforms to Prehistoric Reclamation along Dutch River Valleys. eTopoi, Journal for Ancient Studies. Special Volume 3: 10071037.Google Scholar
Wimmers, W.H. & Van Zweden, R., 1992: Archeologische en historisch-geogra-fische elementen in een natuurgebied : antropogene achtergronden van de Gooise natuurgebieden. Wageningen, SC-DLO Rapport 143: 203 pp.Google Scholar
Wimmers, W.H., Groenman-Van Waateringe, W. & Spek, T., 1993. Het culturele erfgoed van een natuurgebied. Honderden eeuwen menselijke activiteit in het natuurlandschap van de Bussumer- en Westerheide, Historisch-Geografisch Tijdschrift 11: 5374.Google Scholar
Wintle, A.G., 2008. Luminescence dating of Quaternary sediments – introduction. Boreas 4: 469470.Google Scholar