Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T05:16:44.231Z Has data issue: false hasContentIssue false

Direct land/sea correlation of the Eemian, and its comparison with the Holocene: a high-resolution palynological record off the Iberian margin

Published online by Cambridge University Press:  01 April 2016

M.F. Sánchez Goñi
Affiliation:
Département de Géologie et Océanographie, UMR-CNRS 5805, Université Bordeaux I, Avenue des Facultés, 33405 TALENCE, France Instituto de Ciencias de la Tierra ‘Jaume Almera’, CSIC, Lluís Solé i Sabarís s/n, 08028 BARCELONA, Spain
J.-L. Turon
Affiliation:
Département de Géologie et Océanographie, UMR-CNRS 5805, Université Bordeaux I, Avenue des Facultés, 33405 TALENCE, France
F. Eynaud
Affiliation:
Département de Géologie et Océanographie, UMR-CNRS 5805, Université Bordeaux I, Avenue des Facultés, 33405 TALENCE, France
N.J. Shackleton
Affiliation:
Godwin Institute for Quaternary Research, Department of Earth Sciences, Godwin Laboratory, Pembroke Street, CAMBRIDGE CB2 3SA, UK
O. Cayre
Affiliation:
CNRS-CEREGE, BP 80, 13545 AIX-EN-PROVENCE Cx 4, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

High-resolution pollen, dinocyst and isotopie profiles covering the marine isotope stage 5 (MIS 5) are presented from core MD952042 (Tagus abyssal plain, 37°47'N, 10°09'W). Both marine and terrestrial proxies indicate the occurrence of a Bølling-Allerød-Younger Dryas-like event at the beginning of MI substage 5e. The terrestrial Eemian stage coincides with both the lightest oxygen isotope values of substage 5e and the heavier ones approaching the 5e/5d transition. Accordingly, the Eemian is not equivalent to MI substage 5e, as the Holocene is not equivalent to MIS 1.

Remarkably, both pollen and dinocyst data reflect the same climatic pattern on land and ocean, and they evidence a succession of climatic events that the isotope signal does not identify. The Eemian began with a Mediterranean vegetation that was gradually replaced by Eurosiberian formations indicating a change from Mediterranean to oceanic climates. In the middle of the Eemian, warming conditions were interrupted by an event corresponding to a slight cooling resulting from an increase in precipitation over land and ocean. Finally, a warming trend characterised the last phase of the Eemian. The occurrence of small climatic changes during this interglacial is inconsistent with the dramatic variability suggested by the GRIP ice-core record.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2000

References

Aaby, B. &Tauber, H., 1995. Eemian and pollen. Nature 376: 2728.Google Scholar
Adkins, J.F., j Boyle, E.A., Keigwin, L., & Cortijo, E., 1997. Variability of the North Atlantic thermohaline circulation during the last interglacial period. Nature 390: 154156.Google Scholar
Alley, R., 1995. Comparison of deep ice cores. Nature 373: 393.Google Scholar
Bassinot, F. & Labeyrie, L., 1996. IMAGES MD 101. Institut Français pour la Recherche et la Technologie Polaires (Plouzané) : 217 pp.Google Scholar
Berger, A. & Loutre, M.F., 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10: 297317.Google Scholar
Birks, H.J.B. & Birks, H.H., 1980. Quaternary palaeoecology. Edward Arnold (London): 289 pp.Google Scholar
Blanco Castro, E., Casado González, M.A., Costa Tenorio, M., Escribano Bombín, R., García Antón, M., Génova Fuster, M., Gómez Manzaneque, F., Moreno Sáiz, J.C., Moría Juaristi, C., Regato Pajares, P. & Sáiz Ollero, H., 1997. Los bosques ibéricos. Planeta (Barcelona): 572 pp.Google Scholar
Broecker, W.S., 1998. The end of the present interglacial: how and when? Quaternary Science Reviews 17: 689694.Google Scholar
Cayre, O., 1997. Reconstitutions paléocéanographiques au Quaternaire récent à partir de l’analyse quantitative des foraminifères planctoniques dans l’océan Indien et dans l’Atlantique Nord Est. Ph.D. Université Aix-Marseule: 199 pp.Google Scholar
Cheddadi, R. & Rossignol-Strick, M., 1995. Eastern Mediterranean Quaternary paleoclimates from pollen and isotope records of marine cores in the Nile Cone area. Paleoceanography 10:291306.Google Scholar
Cheddadi, R., Mamakova, K., Guiot, J., De Beaulieu, J.-L., Reille, M., Andrieu, V., Granoszewski, W. & Peyron, O., 1998. Was the climate of the Eemian stable? A quantitative climate reconstruction from seven European pollen records. Palaeogeography Palaeoclimatology Palaeoecology 143: 7385.CrossRefGoogle Scholar
Cortijo, E., Duplessy, J.-C., Labeyrie, L., Leclaire, H., Duprat, J. & Van Weering, T.C.E., 1994. Eemian cooling in the Norwegian Sea and North Atlantic Ocean preceding continental ice-sheet growth. Nature 372: 446449.Google Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjörnsdottir, A.E., Jouzel, J. & Bond, G., 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364: 218220.Google Scholar
De Beaulieu, J.-L. & Reille, M., 1984: A long Upper Pleistocene pollen record from Les Echets, near Lyon, France. Boreas 13: 111132.CrossRefGoogle Scholar
De Beaulieu, J.-L. & Reille, M., 1992. The last climatic cycle at La Grande Pile (Vosges, France). A new pollen profile. Quaternary Science Reviews 11: 431438.Google Scholar
De Vernal, A., Londeix, L., Mudie, P.J., Harland, R., Morzadec-Ker-fourn, M.-T.,Turon, J.L. &Wrenn, J.H., 1992. Quaternary organic-walled dinoflagellate cysts of the North Atlantic Ocean and adjacent seas : ecostratigraphy and biostratigraphy. In: Head, M.J. & Wrenn, J.H. (eds.): Neogene and Quaternary dinoflagellate cyst of the North Atlantic Ocean and adjacent seas: ecostratigraphy and biostratigraphy. AASP Foundation (Dallas): 289328.Google Scholar
De Vernal, A., Henry, M. & Bilodeau, G., 1996. Techniques de préparation et d’analyse en micropaléontologie. Les cahiers du GE-OTOP 3: 1627.Google Scholar
Field, M.H., Huntley, B. & Müller, H., 1994. Eemian climate fluctuations observed in a European pollen record. Nature 383: 806810.Google Scholar
Fiúza, A.F. de, G., Macedo, M.E.D. & Guerreiro, M.R., 1982. Climatological space and time variation of the Portuguese coastal upwelling. Oceanologica Acta 5: 3140.Google Scholar
Follieri, M., Magri, D. & Sadori, L., 1988. 250.000-year pollen record from valle di Castiglione (Roma). Pollen et Spores 30: 329356.Google Scholar
Fronval, T. & Jansen, E., 1997. Eemian and early Weichselian (140–60 ka) paleoceanography and paleoclimate in the Nordic seas with comparisons to Holocene conditions. Paleoceanography 12: 443462.Google Scholar
Fronval, T., Jansen, E., Haflidason, H. & Sejrup, P., 1998. Variability in surface and deep water conditions in the Nordic seas during the Last Interglacial period. Quaternary Science Reviews 17: 963985.CrossRefGoogle Scholar
GRIP members, 1993. Climate instability during the last interglacial period recorded in the GRIP ice core. Nature 364: 203207.Google Scholar
Guiot, J., Pons, A., De Beaulieu, J.L. & Reille, M., 1989. A 140.000 years continental climate reconstruction from two European pollen records. Nature 338: 309313.Google Scholar
Heusser, L., 1985. Quaternary palynology of marine sediments in the northeast Pacific, northwest Atlantic, and Gulf of Mexico. In: Pollen records of Late-Quaternary North American sediments. AASP Foundation (Dallas): 385403.Google Scholar
Heusser, L.E. & Balsam, W.L., 1977. Pollen distribution in the N.E. Pacific ocean. Quaternary Research 7: 4562.Google Scholar
Hooghiemstra, H., Stalling, H., Agwu, C.O.C. & Dupont, L.M., 1992. Vegetational and climatic changes at the northern fringe of the Sahara 250,000–5000 years BP: evidence from 4 marine pollen records located between Portugal and the Canary Islands. Review of Palaeobotany and Palynolology 74: 153.CrossRefGoogle Scholar
Kukla, G., McManus, J.E, Rousseau, D.-D. & Chuine, I., 1997. How long and how stable was the last interglacial? Quaternary Science Reviews 16: 605612.CrossRefGoogle Scholar
Lentin, J.K. & Williams, G.L., 1989. Fossil dinoflagellates: index to genera and species. AASP Foundation (Dallas) 20: 473 pp.Google Scholar
Lézine, A.-M. & Denèfle, M., 1997. Enhanced anticyclonic circulation in the eastern North Atlantic during cold intervals of the last déglaciation inferred from deep-sea pollen records. Geology 25: 119122.Google Scholar
Litt, T., Junge, F.W. & Bouger, T., 1996. Climate during the Eemian in north-central Europe – a critical review of the palaeobotan-ical and stable isotope data from central Germany. Vegetation History and Archaeobotany 5: 247256.CrossRefGoogle Scholar
Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C. & Shackleton, N.J., 1987. Age dating and orbital theory of the ice ages: Development of a high-resolution 0 to 300,000-year chronostratigraphy. Quaternary Research 27: 129.Google Scholar
Maslin, M. & Tzedakis, P.C., 1996. Sultry Last Interglacial gets sudden chill. Eos 77: 353354.CrossRefGoogle Scholar
Maslin, M., Sarnthein, M., Knaack, J.J., Grootes, P. & Tzedakis, C., 1998. Intra-interglacial cold events: an Eemian-Holocene comparison. In: Cramp, A., MacLeod, C.J., Lee, S.V. & Jones, E.J.W. (eds.): Geological evolution of ocean basins: results from the Ocean Drilling Program. Geological Society Special Publications (London) 131: 9199.Google Scholar
Oppo, D.W., Horowitz, M. & Lehman, S.J., 1997. Marine core evidence for reduced deep water production during Termination II followed by a relatively stable substage 5e (Eemian). Paleoceanography 12: 5163.CrossRefGoogle Scholar
Pagney, P., 1976. Les climats de laTerre. Masson (Paris): 150 pp.Google Scholar
Peinado Lorca, M. & Martínez-Parras, J.M., 1987. Castilla-La Mancha. In: Peinado Lorca, M. & Martinez, S. Rivas (eds.): La vegetación de España. Universidad de Alcalá de Henares (Alcalá de Henares): 163196.Google Scholar
Pons, A., Guiot, J.L., De Beaulieu, J.L. & Reille, M., 1992. Recent contribution to the climatology of the last glacial-interglacial cycle based on french pollen sequences. Quaternary Science Reviews 11:439448.Google Scholar
Pons, A. & Reille, M., 1988. The Holocene-and Upper Pleistocene pollen record from Padul (Granada, Spain): a new study. Palaeo-geography Palaeoclimatology Palaeoecology 66: 243263.Google Scholar
Sánchez Goñi, M.F., Eynaud, K., Turon, J.-L. & Shackleton, N.J., 1999. High resolution palynological record off the Iberian margin: direct land-sea correlation for the Last Interglacial complex. Earth and Planetary Science Letters 171: 123137.Google Scholar
Sarnthein, M. &Tiedemann, R., 1990. Younger dryas-style cooling events at glacial termination I-VI at ODP Site 658: associated benthic D13C anomalies constrain meltwater hypothesis. Paleo-ceanography 5: 10411055.Google Scholar
Seidenkrantz, M.-S., 1993. Benthic foraminiferal and stable isotope evidence for a Younger Dryas style cold spell at the Saalian-Eemian transition, Denmark. Palaeogeography Palaeoclimatology Palaeoecology 102: 103120.Google Scholar
Seidenkrantz, M.-S. & Knudsen, K.L., 1997. Eemian climate and hydrographical instability on a marine shelf in Northern Denmark. Quaternary Research 47: 218234.Google Scholar
Thouveny, N., De Beaulieu, J.L., Bonifay, E., Creer, K.M., Guiot, J., Icole, M., Johnsen, S., Jouzel, J., Reille, M., Williams, T. & Williamson, D., 1994. Climate variations in Europe over the past 140 kyr deduced from rock magnetism. Nature 372: 503506.Google Scholar
Turon, J.-L., 1984a. Direct land/sea correlations in the last inter-glacial complex. Nature 309: 673676.Google Scholar
Turon, J.-L., 1984b. Le palynoplancton dans l’environnement actuel de l’Atlantique nord-oriental. Evolution climatique et hydrologique depuis le dernier maximum glaciaire. Université de Bordeaux I (Bordeaux): 313 pp.Google Scholar
Turon, J.L., Lecoeur, L., de Vernal, A., Rochon, A. & Lézine, A.M., 1995. Fonction de transfert dinokystes: evolution des conditions de surface en Atlantique Nord-oriental depuis le dernier maximum glaciaire. Abstracts 14e Symposium APLF ‘Palynologie et Changements Globaux’ (Paris): 103.Google Scholar
Tzedakis, P.C., Bennett, K.D.& Magri, D., 1994. Climate and the pollen record. Nature 370: 513.Google Scholar
Weaver, A.J. & Hughes, T.M.C., 1994. Rapid interglacial climate fluctuations driven by North Atlantic ocean circulation. Nature 367: 447450.Google Scholar
Woülard, G.M., 1978. Grande Pile peat bog: a continuous pollen record for the last 140.000 years. Quaternary Research 9: 121.Google Scholar
Woillard, G. & Mook, W.G., 1982. Carbon-14 dates at Grande Pile: correlation of land and sea chronologies. Science 215:159161.Google Scholar
Zagwijn, W.H., 1961. Vegetation, climate and radiocarbon datings in the Late Pleistocene of the Netherlands. Mededelingen Geo-logische Stichting Nieuwe Serie 14: 1545.Google Scholar
Zagwijn, W.H., 1996. An analysis of Eemian climate in western and central Europe. Quaternary Science Reviews 15: 451469.Google Scholar