Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T11:45:03.006Z Has data issue: false hasContentIssue false

The Deposition History of the Coversands along the Bree Fault Escarpment, NE Belgium

Published online by Cambridge University Press:  01 April 2016

M. Frechen
Affiliation:
Universität Regensburg, Institut für Geographie, D-93040 Regensburg, Germany, Present address: Institut für Geowissenschaftliche Gemeinschaftsaufgaben (GGA), S 3: Geochronology and Isotope Hydrology, Stilleweg 2, D-30655 Hannover, Germany; e-mail: [email protected]
K. Vanneste
Affiliation:
Royal Observatory of Belgium, Avenue circulaire 3, B-1180 Bruxelles, Belgium; e-mail: [email protected]; email:[email protected] and [email protected]
K. Verbeeck
Affiliation:
Royal Observatory of Belgium, Avenue circulaire 3, B-1180 Bruxelles, Belgium; e-mail: [email protected]; email:[email protected] and [email protected]
E. Paulissen
Affiliation:
Insituut voor Aardwetenschappen, Geomorfologie, Katholieke Universiteit Leuven, Redingenstraat 16 bis, B-3000 Leuven, Belgium; e-mail: [email protected]
T. Camelbeeck
Affiliation:
Royal Observatory of Belgium, Avenue circulaire 3, B-1180 Bruxelles, Belgium; e-mail: [email protected]; email:[email protected] and [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The coversands along the Bree fault escarpment, NE Belgium, were investigated by a combined dating approach including infrared optically stimulated luminescence (IRSL), thermoluminescence (TL) and radiocarbon methods. Four trenches were excavated cutting the fault scarp near the village of Bree in northeast Belgium. Altogether 17 luminescence samples and seven radiocarbon samples were investigated in order to set up a more reliable and precise chronological frame for the local coversand stratigraphy and the timing of Late Quaternary earthquake events. The chronological results indicate at least five accumulation periods for the coversand units in the area of interest. The oldest coversands were deposited during Saalian or Early Weichselian followed by coversands deposited during the Early and/or Middle Weichselian. At least three coversand units can be distinguished for the time span of the Late Weichselian to Holocene. Significant TL age underestimation of more than 20% compared to IRSL was found for samples from Trench 4. Most of the IRSL age estimates are in agreement with radiocarbon dates from the same section.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2001

References

Balescu, S. & Lamothe, M., 1992. The blue emission of K-feldspars coarse grains and its potential for overcoming TL age underestimation. Quaternary Science Reviews 11: 4551.CrossRefGoogle Scholar
Bateman, M.D. & van Huissteden, K., 1999. The timing of last-glacial periglacial and aeolian events, Twente, eastern Netherlands. Journal of Quaternary Science 14: 277283.3.0.CO;2-W>CrossRefGoogle Scholar
Beerten, K., Vandenberghe, N., Gullentops, F. & Paulissen, E., 1999. Technisch verslag bij de Quartairkaart van België, Vlaams Gewest, kaartblad Maaseik (18), Ministerie van de Vlaamse Gemeenschap, Administratie Natuurlijke Rijkdommen en Energie, Brussel.Google Scholar
Boenigk, W. & Frechen, M., 2001. The loess record in sections at Koblenz-Metternich and Tönchesberg in the Middle Rhine area. Quaternary International 76/77: 201209.CrossRefGoogle Scholar
Camelbeeck, T & Meghraoui, M., 1996. Large earthquakes in northern Europe more likely than once thought. – EOS, Transaction American Geophysical Union 77: 405 and 409.CrossRefGoogle Scholar
Camelbeeck, T. & Meghraoui, M., 1998. Geological and geophysical evidence for large palaeo-earthquakes with surface faulting in the Roer Graben (northwest Europe). Geophysical Journal International 132: 347362.CrossRefGoogle Scholar
Dijkmans, J.W.A. & Wintle, A.G., 1991. Methodological problems in thermoluminescence dating of Weichselian coversand and late Holocene drift sand from the Lutterzand area E. Netherlands. Geologie en Mijnbouw 70: 2133.Google Scholar
Dijkmans, J.W.A., Van Mourik, J.M. & Wintle, A.G., 1992. Thermoluminescence dating of aeolian sands from polycyclic soil profiles in southern Netherlands. Quaternary Science Reviews 11:8592.CrossRefGoogle Scholar
Dijkmans, J.W.A., Wintle, A.G. & Mejdahl, V., 1988. Some thermoluminescence properties and dating of eolian sands from the Netherlands. Quaternary Science Reviews 7: 349355.CrossRefGoogle Scholar
Frechen, M., 1995. Lumineszenz-Datierungen der pleistozänen Tierfährten von Bottrop-Welheim. Münchner Geowissenschaft-liche Abhandlungen 27: 6380.Google Scholar
Frechen, M., Dermann, B., Boenigk, W. & Ronen, A., 2001. Luminescence chronology of aeolianites from the section at Givat Olga – Coastal Plain of Israel. Quaternary Science Reviews 20: 805809.CrossRefGoogle Scholar
Frechen, M. & Van den Berg, M.W., in press. The coversands and timing of Late Quaternary Earthquake events along the Peel Boundary Fault in the Netherlands. Geologie en Mijnbouw, 81 (1),2002.CrossRefGoogle Scholar
Frechen, M., van Vliet-Lanoë, B., Vandenhaute, P., 2001. The Upper Pleistocene loess record at Harmignies/Belgium – high resolution terrestrial archive of climate forcing. Palaeogeography Palaeoclimatology Palaeoecology (173: 175195).CrossRefGoogle Scholar
Hoek, W., 1997. Palaeogeography of Late glacial vegetations. PhD thesis, Vrije Universiteit, Amsterdam, 147 pp.Google Scholar
Paulissen, E., 1983. Les nappes alluviales et les failles quaternaires du Plateau de Campine. In: Robaszynski, F. & Dupuis, C. (eds.), Guides Géologiques Régionaux: Belgique, Masson, Paris, pp. 167170.Google Scholar
Smith, B.W., Rhodes, E.J., Stokes, S., Spooner, N.A. & Aitken, M.J., 1991. Optical dating of sediments: initial quartz results from Oxford. Archaeometry 32: 1931.CrossRefGoogle Scholar
Stokes, S., 1991. Quartz-based optical dating of Weichselian coversands from the eastern Netherlands. Geologie en Mijnbouw 70: 327337.Google Scholar
Vandenberghe, J., 1985. Palaeoenvironment and stratigraphy during the last glacial in the Belgian-Dutch border region. Quaternary Research 24: 2338.CrossRefGoogle Scholar
Van Geel, B., Coope, G.R. & Van der Hammen, T., 1989. Palaeoe-cology and stratigraphy of the Lateglacial type section at Usselo (The Netherlands). Review of Palaeobotany and Palynology 60: 25130.CrossRefGoogle Scholar
Van Huissteden, J., 1990. Tundra rivers of the Last Glacial: sedimentation and geomorphological processes during the Middle Pleniglacial in the Dinkel valley (eastern Netherlands). Mededelingen Rijks Geologische Dienst 44: 3138.Google Scholar
Vanneste, K., Meghraoui, M. & Camelbeeck, T., 1999. Late Quaternary earthquake-related soft-sediment deformation along the Belgian portion of the Feldbiss Fault, Lower Rhine Graben system. Tectonophysics 309: 5779.CrossRefGoogle Scholar
Vanneste, K., Verbeeck, K., Camelbeeck, T., Renardy, F., Jongmans, D., Meghraoui, M., Paulissen, E. & Frechen, M., 2001. Surface rupturing history of the Bree fault escarpment, Roer Valley Graben: new trench evidence for at least six successive events during the last 150 to 185 kyr. Journal of Seismology, 5: 329359.CrossRefGoogle Scholar
Wallinga, J. & Duller, G.A.T., 2000. The effect of optical absorption on the infrared stimulated luminescence age obtained on coarse-grain feldspar. Quaternary Science Reviews 19: 10351042.CrossRefGoogle Scholar
Wintle, A.G., 1973. Anomalous fading of thermoluminescence in mineral samples. Nature 245: 143144.CrossRefGoogle Scholar
Wintle, A.G. & Duller, G.A.T., 1991. The effect of optical absorption on luminescence dating. Ancient TL 9: 3739.Google Scholar