Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T22:41:22.810Z Has data issue: false hasContentIssue false

Climate-driven fluvial development and valley abandonment at the last glacial-interglacial transition (Oude IJssel-Rhine, Germany)

Published online by Cambridge University Press:  24 March 2014

M.M. Janssens*
Affiliation:
Department of Climate Change and Landscape Dynamics, Faculty of Earth and Life Sciences, Vrije Universiteit, de Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
C. Kasse
Affiliation:
Department of Climate Change and Landscape Dynamics, Faculty of Earth and Life Sciences, Vrije Universiteit, de Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
S.J.P. Bohncke
Affiliation:
Department of Climate Change and Landscape Dynamics, Faculty of Earth and Life Sciences, Vrije Universiteit, de Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
H. Greaves
Affiliation:
Department of Physical Geography, Faculty of Geosciences, Utrecht University, Postbus 80.115, 3508 TC, Utrecht, the Netherlands
K.M. Cohen
Affiliation:
Department of Physical Geography, Faculty of Geosciences, Utrecht University, Postbus 80.115, 3508 TC, Utrecht, the Netherlands Department of Applied Geology and Geophysics, Division BGS, Deltares, P.O. Box 85.467, 3508 TC Utrecht, the Netherlands
J. Wallinga
Affiliation:
Netherlands Centre for Luminescence dating, Delft University of Technology, Faculty of Applied Sciences, Mekelweg 15, 2629 JB Delft, the Netherlands
W.Z. Hoek
Affiliation:
Department of Physical Geography, Faculty of Geosciences, Utrecht University, Postbus 80.115, 3508 TC, Utrecht, the Netherlands

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the Weichselian, the Lower Rhine in the Dutch-German border region has used three courses, dissecting ice-marginal topography inherited from the Saalian. In the Late Weichselian, the three courses functioned simultaneously, with the central one gaining importance and the outer ones abandoning. This study aims to reconstruct the fluvial development and forcings that culminated in abandonment of the northern branch ‘Oude IJssel-Rhine’, at the time of the Lateglacial to Holocene transition. The fluvial architecture is studied using a cored transect over the full width of the valley, detailed cross-sections over palaeochannels and geomorphological analysis using digital elevation and borehole data. Biostratigraphy, radiocarbon dating and OSL dating provide a timeframe to reconstruct the temporal fluvial development. In its phase of abandonment, the fluvial evolution of the Oude IJssel-Rhine course is controlled by the ameliorating climate and related vegetation and discharge changes, besides by intrinsic (autogenic) fluvial behaviour such as the competition for discharge with the winning central branch and the vicinity of the Lippe tributary confluence. The rapid climate warming at the start of the Late Glacial resulted in flow contraction as the initial response. Other fluvial geomorphic adjustments followed, with some delay. An aggrading braided or transitional system persisted until the start of the Allerød, when channel patterns finally changed to meandering. Floodplain incision occurred at the Allerød - Younger Dryas transition and a multi-channel system developed fed by Rhine discharge. At the start of the Holocene, this system transformed into a small-scale, local meandering system, which was abandoned shortly after the start of the Holocene.

The final abandonment of the Oude IJssel-Rhine and Niers-Rhine courses can be attributed to deep incision of the Central Rhine course in the earliest Holocene and is considered to be controlled by flow contraction induced by climate and related vegetation and discharge changes.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2012

References

Antoine, P., 1997. Évolution Tardiglaciaire et début Holocène des vallées de la France septentrionale: nouveaux résultats. C.R. Acad. Sci. Paris, Sciences de la terre et des planètes / Earth & Planetary sciences 325: 3542.Google Scholar
Baales, M., Jöris, O., Street, M., Bittmann, F., Weninger, B., & Wiethold, J., 2002. Impact of the Late Glacial eruption of the Laacher See volcano, Central Rhineland, Germany. Quaternary Research 58: 273288.CrossRefGoogle Scholar
Bateman, M.D., Hannam, J. & Livingstone, I., 1999. Late Quaternary dunes at Twigmoor Woods, Lincolnshire, UK: a preliminary investigation. Zeitschrift für Geomorphologie, Neue Folge, Supplement-Band 116: 131–46.Google Scholar
Berendsen, H.J.A., 2004. De vorming van het land – Inleiding in de geologie en de geomorfologie. Assen: Van Gorcum, 4e druk, 411 pp.Google Scholar
Berendsen, H.J.A. & Stouthamer, E., 2001. Palaeogeographic development of the Rhine-Maas Delta, the Netherlands. Van Gorcum (Assen), 270 pp.Google Scholar
Berendsen, H.J.A., Hoek, W.Z. & Schorn, E., 1995. Late Weichselian and Holocene river channel changes of the rivers Rhine and Maas in the Netherlands. In: Frenzel, B. (ed.): European River activity and climatic change during the Lateglacial and Early Holocene. ESF project ‘European palaeoclimate and man’, special issue 9. Paläoklimaforschung/Palaeoclimate Research 14: 151172.Google Scholar
Blum, M.D., & Törnqvist, T.E., 2000. Fluvial responses to climate and sea-level change: a review and look forward. Sedimentology 47: 248.CrossRefGoogle Scholar
Boenigk, W. & Frechen, M., 2006. The Pliocene and Quaternary fluvial archives of the Rhine system. Quaternary Science Reviews 25: 550574.CrossRefGoogle Scholar
Bohncke, S.P.J., 1993. Lateglacial environmental changes in the Netherlands: spatial and temporal patterns. Quaternary Science Reviews 12: 707712.CrossRefGoogle Scholar
Bogaart, P.W., 2003. Process based modelling of the fluvial response to rapid climate change, with reference to the River Maas during the Last Glacial - Interglacial Transition. PhD Thesis, Vrije Universiteit, Amsterdam.CrossRefGoogle Scholar
Bohncke, S.P.J., Vandenberghe, J. & Huijzer, A.S., 1993. Periglacial environments during the Weichselian Lateglacial in the Maas valley, the Netherlands. Geologie en Mijnbouw 72: 193210.Google Scholar
Bøtter-Jensen, L., Andersen, C.E., Duller, G.A.T. & Murray, A.S., 2003. Developments in radiation, stimulation and observation facilities in luminescence measurements. Radiation Measurements 37: 535541.CrossRefGoogle Scholar
Busschers, F.S., Kasse, C., Van Balen, R.T., Vandenberghe, J., Cohen, K.M., Weerts, H.J.T., Wallinga, J., Johns, C., Cleveringa, P. & Bunnik, F.P.M., 2007. Late Pleistocene evolution of the Rhine in the southern North-Sea Basin: Imprints of climate change, sea-level oscillations and glacio-isostacy. Quaternary Science Reviews 26: 32163248.CrossRefGoogle Scholar
Busschers, F.S., Van Balen, R.T., Cohen, K.M., Kasse, C., Weerts, H.J.T., Wallinga, J. & Bunnik, F.P.M., 2008. Response of the Rhine-Meuse fluvial system to Saalian ice-sheet dynamics. Boreas 37: 377398.CrossRefGoogle Scholar
Cohen, K.M., 2003. Differential subsidence within a coastal prism. Late-Glacial -Holocene tectonics in the Rhine-Meuse delta, the Netherlands. Published PhD Thesis, Utrecht University. The Royal Dutch Geographical Society / Faculty of Geographical Sciences, Utrecht University, Nederlands Geografische Studies 316, 172 pp.Google Scholar
Cohen, K.M., Stouthamer, E. & Berendsen, H.J.A., 2002. Fluvial deposits as a record for Late Quaternary neotectonic activity in the Rhine-Maas delta, the Netherlands. Netherlands Journal of Geosciences / Geologie en Mijnbouw 81: 389405.CrossRefGoogle Scholar
Cohen, K.M., Stouthamer, E., Hoek, W.Z., Berendsen, H.J.A. & Kempen, H.F.J., 2009. Zand in Banen – Zanddieptekaarten van het Rivierengebied en het IJsseldal in de provincies Gelderland en Overijssel. Arnhem. Provincie Gelderland, 129 pp.Google Scholar
De Bakker, H. & Schelling, J., 1966. Systeem van bodem-classificatie voor Nederland. De hogere niveaus (with English summary). Pudoc (Wageningen).Google Scholar
Erkens, G., 2009. Sediment dynamics in the Rhine catchment. Quantification of fluvial response to climate change and human impact. PhD thesis, Utrecht University. Netherlands Geographical Studies 388: 278 pp.Google Scholar
Erkens, G., Dambeck, R., Volleberg, K.P., Bouman, M.T.I.J., Bos, J.A.A., Cohen, K.M., Wallinga, J. & Hoek, W.Z., 2009. Fluvial terrace formation in the northern Upper Rhine Graben during the last 20,000 years as a result of allogenic controls and autogenic evolution. Geomorphology 103: 476495.CrossRefGoogle Scholar
Erkens, G., Hoffmann, T., Gerlach, R. & Klostermann, J., 2011. Complex fluvial response to Late Glacial and Holocene allogenic forcing in the Lower Rhine Embayment (Germany). Quaternary Science Reviews 30: 611627.CrossRefGoogle Scholar
Faegri, K. & Iversen, J., 1989. Textbook of Pollen Analysis, 4th edition. Wiley & Sons, Chichester.Google Scholar
Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H. & Olley, J.M., 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: part I, experimental design and statistical models. Archaeometry 41: 339364.CrossRefGoogle Scholar
Gibbard, P.L. & Lewin, J., 2002. Climate and related controls on interglacial fluvial sedimentation in lowland Britain. Sedimentary Geology 151: 187210.CrossRefGoogle Scholar
Herget, J., 1997. Die Fluss entwicklung der Lippe. Bochumer Geographische Arbeiten 62: 1142.Google Scholar
Hijma, M.P., Cohen, K.M., Hoffmann, G., Van der Spek, A. & Stouthamer, E., 2009. From river valley to estuary: the evolution of the Rhine mouth in the early to middle Holocene (western Netherlands, Rhine-Maas delta). Netherlands Journal of Geosciences 88: 1353.CrossRefGoogle Scholar
Hoek, W.Z., 1997a. Late-Glacial and early Holocene climatic events and chronology of vegetation development in the Netherlands. Vegetation History and Archaeobotany 6: 197213.CrossRefGoogle Scholar
Hoek, W.Z., 1997b. Atlas to Palaeogeography of Lateglacial Vegetations - Maps of Lateglacial and Early Holocene landscape and vegetation in the Netherlands, with an extensive review of available palynological data. PhD Thesis Volume II: Netherlands Geographical Studies 231, Utrecht/Amsterdam, 176 pp.Google Scholar
Hoek, W.Z., 2008. The Last Glacial-Interglacial Transition, Episodes 31: 226229.CrossRefGoogle Scholar
Hoek, W.Z. & Bohncke, S.J.P., 2002. Climatic and environmental events over the Last Termination, as recorded in the Netherlands: a review. Geologie & Mijnbouw / Netherlands Journal of Geosciences 81: 123137.CrossRefGoogle Scholar
Huisink, M., 1997. Late Glacial sedimentological and morphological changes in a lowland river as a response to climatic change: the Maas, the Netherlands. Journal of Quaternary Science 12: 209223.3.0.CO;2-P>CrossRefGoogle Scholar
Huisink, M., 1998. Changing river styles in response to climate change. Examples from the Maas and Vecht during the Weichselian Pleni- and Lateglacial. PhD thesis, Vrije Universiteit Amsterdam, 127 pp.Google Scholar
Huisink, M., 2000. Changing river styles in response to Weichselian climate changes in the Vecht valley, eastern Netherlands. Sedimentary Geology 133: 115134.CrossRefGoogle Scholar
Huntley, B. & Birks, H.J.B., 1983. An atlas of past and present pollen maps for Europe: 0-13,000 years ago. Cambridge University Press (Cambridge) UK, 667 pp.Google Scholar
Isarin, R.F.B., 1997. The climate in northwestern Europe during the Younger Dryas: a comparison of multiproxy climate reconstructions with simulation experiments. PhD thesis, Vrije Universiteit Amsterdam. Netherlands Geographical Studies 229.Google Scholar
Isarin, R.F.B. & Bohncke, S.J.P., 1999. Mean July temperatures during the Younger Dryas in northwestern and central Europe as inferred from Climate Indicator plant Species. Quaternary Research 51: 158173.CrossRefGoogle Scholar
Kasse, C., 1997. Cold-climate aeolian sand-sheet formation in North-Western Europe (c. 14-12.4 ka); a response to permafrost degradation and increased aridity. Permafrost and Periglacial Processes 8: 295311.3.0.CO;2-0>CrossRefGoogle Scholar
Kasse, C., 2002. Sandy aeolian deposits and environments and their relation to climate during the Last Glacial Maximum and Lateglacial in northwest and central Europe. Progress in Physical Geography 26(4): 507532.CrossRefGoogle Scholar
Kasse, C., Vandenberghe, J. & Bohncke, S., 1995. Climatic change and fluvial dynamics of the Maas during the late Weichselian and early Holocene. In: Frenzel, B. (ed.): European River activity and climatic change during the Lateglacial and Early Holocene. ESF project ‘European palaeoclimate and man’, special issue 9. Paläoklimaforschung / Palaeoclimate Research 14: 123150.Google Scholar
Kasse, C., Hoek, W.Z., Bohncke, S.J.P., Konert, M., Weijers, J.W.H. & Cassee, M.L., 2005. Lateglacial fluvial response of the Niers-Rhine (western Germany) to climate and vegetation change. Journal of Quaternary Science 20(4): 377394.CrossRefGoogle Scholar
Kasse, C., Bohncke, S.J.P., Vandenberghe, J. & Gábris, G., 2010. Fluvial style changes during the last glacial-interglacial transition in the middle Tisza valley (Hungary). Proceedings of the Geologists' Association 121: 180194.CrossRefGoogle Scholar
Kiden, P., 1991. The Lateglacial and Holocene evolution of the middle and lower river Scheldt, Belgium. In: Starkel, L., Gregory, K.J. & Thornes, J.B. (eds): Fluvial processes in the temperate zone during the last 15,000 years: Temperate palaeohydrology, John Wiley and Sons, Chichester: 283299.Google Scholar
Klostermann, J., 1992. Das Quartär der Niederrheinischen Bucht. Ablagerungen der letzten Eiszeit am Niederrhein. Geologisches Landesamt NordrheinWestfalen, Krefeld, 200 pp.Google Scholar
Klostermann, J., 1997. Geologische Karte von Nordrhein-Westfalen 1:100 000, Blatt C4302 Bocholt. Geologisches Landesamt Nordrhein-Westfalen.Google Scholar
Kolstrup, O., 1980. Climate and stratigraphy in Northwestern Europe between 30,000 B.P. and 13,000 B.P., with special reference to the Netherlands, Mededelingen Rijks Geologische Dienst 32: 181253.Google Scholar
Kozarski, S., 1990. Pleni and Late Vistulian aeolian phenomena in Poland: new occurrences, palaeoenvironmental and stratigraphic interpretations. Acta Geographica Debrecina 1987-1988, Tomus XXVI–XXVII: 3145.Google Scholar
Kozarski, S., 1983. River channel changes in the middle reach of the Warta valley, Great Poland lowland. Quaternary studies in Poland 4: 159169.Google Scholar
Litt, T., Schmincke, H.U. & Kromer, B., 2003. Environmental response to climatic and volcanic events in central Europe during the Weichselian Lateglacial. Quaternary Science Reviews 22: 732.CrossRefGoogle Scholar
Makaske, B. & Nap, R., 1995. A transition from a braided to a meandering channel facies, showing inclined heterolithic stratification (Late Weichselian, central Netherlands). Geologie en Mijnbouw 74: 1320.Google Scholar
Manikowska, B., 1991. Vistulian and Holocene aeolian activity, pedostratigraphy and relief evolution in Central Poland. Zeitschrift für Geomorphologie, Neue Folge, Supplement-Band 90: 131–41.Google Scholar
Manikowska, B., 1994. État des études des processus éoliens dans la région de Lodz (Pologne Centrale). Biuletyn Peryglacjalny 33: 107–31.Google Scholar
Mol, J., 1997. Fluvial response to Weichselian climate changes in the Niederlausitz, Germany. Journal of Quaternary Science 12: 4360.3.0.CO;2-0>CrossRefGoogle Scholar
Murray, A.S. & Wintle, A.G., 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37: 377.CrossRefGoogle Scholar
Nilsson, M., Klarqvist, M., Bohlin, E. & Possnert, G., 2001. Variation in 14C age of macrofossils and different fractions of minute peat samples dated by AMS. The Holocene 11: 579586.CrossRefGoogle Scholar
Pons, L.J., 1957. De geologie, de bodemvorming en de waterstaatkundige ontwikke-ling van het Land van Maas en Waal en een gedeelte van het Rijk van Nijmegen. Mededelingen Stichting Bodemkartering, Bodemkundige Studies 3, 156 pp.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., Van der Plicht, J. & Weyhenmeyer, C.E., 2009. Intcal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP. Radiocarbon 51: 11111150.CrossRefGoogle Scholar
Renssen, H. & Isarin, R.F.B., 2001. The two major warming phases of the last deglaciation at ˜14.7 and ˜11.5 ka cal BP in Europe: climate reconstructions and AGCM experiments. Global and Planetary Change 30: 117153CrossRefGoogle Scholar
Renssen, H. & Bogaart, P.W., 2003. Atmospheric variability over the ˜14.7 kyr BP stadial-interstadial transition in the North Atlantic region as simulated by an AGCM. Climate Dynamics 20: 301313.CrossRefGoogle Scholar
Rittenour, T.M., 2008. Luminescence dating of fluvial deposits: applications to geomorphic, palaeoseismic and archaeological research. Boreas 37: 613635.CrossRefGoogle Scholar
Rose, J., 1995. Lateglacial and early Holocene river activity in lowland Britain. In: Frenzel, B. (ed.): European River Activity and Climatic Change during the Lateglacial and Early Holocene. ESF Project ‘European palaeoclimate and man’, special issue 9. Paläoklimaforschung / Palaeoclimate Research 14: 5174.Google Scholar
Schirmer, W., 1990. Rheingeschichte zwischen Mosel und Maas. In: Deuqua-führer, vol. 1. Deutsche Quartärvereinigung (Hannover), 295 pp.Google Scholar
Schirmer, W., 1995. Valley bottoms in the late Quaternary. Zeitschrift für Geomorphologie, Neue Folge, Supplement-Band 100: 2751.Google Scholar
Schlaak, N., 1997. Äolische Dynamik im brandenburgischen Tiefland seit dem Weichselspätglazial. Arbeitsberichte Geographisches Institut, Humboldt-Universität zu Berlin, Heft 24, 58 pp.Google Scholar
Schmincke, H.-U., Park, C. & Harms, E., 1999. Evolution and environmental impacts of the eruption of Laacher See Volcano (Germany) 12,900 a BP. Quaternary International 61: 6172.CrossRefGoogle Scholar
Starkel, L., 1983. The reflection of hydrologic changes in the fluvial environment of the temperate zone during the last 15,000 years. In: Gregory, K.J. (ed.): Background to palaeohydrology: a perspective. Wiley (London): 213235.Google Scholar
Tebbens, L.A., Veldkamp, A., Westerhoff, W. & Kroonenberg, S.B., 1999. Fluvial incision and channel downcutting as a response to Late-glacial and Early Holocene climate change: the lower reach of the River Maas (Maas), the Netherlands. Journal of Quaternary Science 14: 5975.3.0.CO;2-Z>CrossRefGoogle Scholar
Thomé, K. N., 1959. Das Inlandeis am Niederrhein. Fortschritte in der Geologie von Rheinland und Westfalen 4: 197246.Google Scholar
Van Balen, R.T., Houtgast, R.F. & Cloetingh, S.A.P.L., 2005. Neotectonics of the Netherlands: a review. Quaternary Science Reviews 24: 439454.CrossRefGoogle Scholar
Van Balen, R.T., Busschers, F.S. & Tucker, G.E., 2010. Modeling the response of the Rhine-Meuse fluvial system to Late Pleistocene climate change. Geomorphology, 114: 440452.CrossRefGoogle Scholar
Van De Meene, E.A., 1977. Toelichtingen bij de Geologische kaart van Nederland 1:50.000. Blad Arnhem Oost (400). Rijks Geologische Dienst, Haarlem.Google Scholar
Van De Meene, E.A. & Zagwijn, W.H., 1978. Die Rheinläufe im deutsch-niederländischen Grenzgebiet seit der Saale-Kaltzeit. Überblick neuer geologischen und pollenanalytischen Untersuchungen. Fortschritte in der Geologie von Rheinland und Westfalen 28: 345359.Google Scholar
Vandenberghe, J., 1995. Timescales, climate and river development. Quaternary Science Reviews 14: 631638.CrossRefGoogle Scholar
Vandenberghe, J., 2008. The fluvial cycle at cold-warm-cold transitions in lowland regions: A refinement of theory. Geomorphology 89: 275284.CrossRefGoogle Scholar
Vandenberghe, J., Kasse, C., Bohncke, S. & Kozarski, S., 1994. Climate-related river activity at the Weichselian-Holocene transition: a comparative study of the Warta and Maas rivers. Terra Nova 6: 476485.CrossRefGoogle Scholar
Van Geel, B., Bohncke, S. & Dee, H., 1981. A palaeoecological study of an upper Lateglacial and Holocene sequence from ‘De Borchert’, the Netherlands. Review of Palaeobotany and Palynology 31: 359488.Google Scholar
Van Huissteden, J., 1990. Tundra rivers of the Last Glacial: sedimentation and geomorphological processes during the Middle Pleniglacial in the Dinkel valley (eastern Netherlands). Mededelingen Rijks Geologische Dienst 44(3): 3138.Google Scholar
Verbraeck, A., 1984. Toelichtingen bij de geologische kaart van Nederland 1: 50.000. Blad Tiel West (39W) en Tiel Oost (39O). Rijks Geologische Dienst: Haarlem; 335 pp.Google Scholar
Wallinga, J., Davids, F. & Dijkmans, J.W.A., 2007. Luminescence dating of Netherlands' sediments. Netherlands Journal of Geosciences – Geologie en Mijnbouw 86: 179196.CrossRefGoogle Scholar
Zagwijn, W.H., 1994. Reconstruction of climate change during the Holocene in western and central Europe based on pollen records of indicator species. Vegetation History and Archaeobotany 3: 6588.CrossRefGoogle Scholar